
ComponentOne

ComboBox for WPF

Copyright  1987-2011 ComponentOne LLC. All rights reserved.

Corporate Headquarters
ComponentOne LLC
201 South Highland Avenue
3rd Floor
Pittsburgh, PA 15206 ∙ USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of ComponentOne LLC. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After
90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and
handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was
written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make
copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/

iii

Table of Contents

ComponentOne ComboBox for WPF Overview...1

What’s New in ComboBox for WPF.. 1

Installing ComboBox for WPF.. 1

ComboBox for WPF Setup Files .. 1

System Requirements... 2

Installing Demonstration Versions ... 3

Uninstalling ComboBox for WPF .. 3

End-User License Agreement .. 3

Licensing FAQs .. 3

What is Licensing? ... 3

How does Licensing Work?... 4

Common Scenarios .. 4

Troubleshooting ... 6

Technical Support... 8

Redistributable Files ... 9

About this Documentation .. 9

XAML and XAML Namespaces .. 9

Creating a Microsoft Blend Project ... 10

Creating a .NET Project in Visual Studio... 11

Creating an XAML Browser Application (XBAP) in Visual Studio .. 12

Adding the ComboBox for WPF Components to a Blend Project ... 13

Adding the ComboBox for WPF Components to a Visual Studio Project .. 14

Key Features ..17

ComboBox for WPF Quick Start..17

Step 1 of 4: Creating an Application with a C1ComboBox Control .. 17

Step 2 of 4: Adding Items to the First C1ComboBox Control .. 19

Step 3 of 4: Adding Code to the Control .. 19

Step 4 of 4: Running the Project.. 22

Working with the C1ComboBox Control ...23

C1ComboBox Elements... 23

iv

C1ComboBox Features .. 24

Drop-Down List Direction .. 24

Item Selection ... 24

AutoComplete .. 25

Drop-Down List Sizing.. 25

ComboBox for WPF Layout and Appearance ..25

ComponentOne ClearStyle Technology ... 25

How ClearStyle Works .. 26

C1ComboBox and C1ComboBoxItem ClearStyle Properties .. 26

ComboBox for WPF Appearance Properties ... 27

Text Properties ... 27

Content Positioning Properties ... 27

Color Properties ... 27

Border Properties.. 27

Size Properties .. 28

Templates .. 28

Item Templates ... 29

ComboBox for WPF Task-Based Help ...31

Working with ComboBox Items ... 31

Adding ComboBox Items in the Designer ... 31

Adding ComboBox Items in XAML .. 31

Adding ComboBox Items in Code.. 32

Adding ComboBox Items from a Collection ... 33

Changing the Drop-Down List Direction... 34

Disabling AutoComplete ... 35

Setting the Maximum Height and Maximum Width of the Drop-Down List... 36

Launching with the Drop-Down List Open ... 37

Opening the Drop-Down List on MouseOver ... 38

Selecting an Item .. 38

 1

ComponentOne ComboBox for WPF
Overview
ComponentOne ComboBox™ for WPF is a full-featured combo box
control that combines an editable text box with an auto-searchable
drop-down list.

Getting Started

- Working with the

C1ComboBox Control

(page 23)

- Quick Start (page 17)

- Task-Based Help (page

31)

What’s New in ComboBox for WPF
The ComboBox for WPF documentation was last updated on October 29, 2010 for its 2010 v3 release.

The following features have been added to ComboBox for WPF:

 ComboBox for WPF now features ComponentOne’s ClearStyle technology, a new and simple approach
to providing Silverlight and WPF control styling. For more information about ClearStyle technology, see
the ComponentOne ClearStyle Technology (page 25) topic.

 You can now use a unified namespace,
xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml", in your WPF projects.
All ComponentOne WPF controls will be accessible through XAML using this namespace. Please note,
however, that you must add a reference to the assembly of each control you wish to use.

Tip: A version history containing a list of new features, improvements, fixes, and changes for each product
is available in HelpCentral at http://helpcentral.componentone.com/VersionHistory.aspx.

Installing ComboBox for WPF
The following sections provide helpful information on installing ComponentOne ComboBox for WPF.

ComboBox for WPF Setup Files

The installation program will create the directory C:\Program Files\ComponentOne\Studio for WPF,
which contains the following subdirectories:

Bin Contains copies of all ComponentOne binaries (DLLs, EXEs). For
Component ComboBox for WPF, the following DLLs are installed:

 C1.WPF.dll

In addition, the following files from the Microsoft WPF Toolkit are
also installed:

 WPFToolkit.dll

http://helpcentral.componentone.com/VersionHistory.aspx

2

 WPFToolkit.Design.dll

 WPFToolkit.VisualStudio.Design.dll

For more information about the Microsoft WPF Toolkit, see
CodePlex. The C1.WPF.dll and WPFToolkit.dll assemblies are
required for deployment.

C1WPF\XAML Contains the full XAML definitions of C1ComboBox styles and
templates which can be used for creating your own custom styles and
templates.

The ComponentOne Studio for WPF Help Setup program installs integrated Microsoft Help 2.0 and Microsoft
Help Viewer help to the C:\Program Files\ComponentOne\Studio for WPF directory in the following folders:

H2Help Contains Microsoft Help 2.0 integrated documentation for all Studio
components.

HelpViewer Contains Microsoft Help Viewer Visual Studio 2010 integrated
documentation for all Studio components.

Samples

Samples for the product are installed in the ComponentOne Samples folder by default. The path of the
ComponentOne Samples directory is slightly different on Windows XP and Windows 7/Vista machines:

Windows XP path: C:\Documents and Settings\<username>\My Documents\ComponentOne Samples

Windows 7/Vista path: C:\Users\<username>\Documents\ComponentOne Samples

The ComponentOne Samples folder contains the following subdirectories:

Common Contains support and data files that are used by many of the demo
programs.

Studio for WPF Contains samples for DateTimeEditors for WPF.

You can access samples from the ComponentOne Control Explorer. To view samples, on your desktop, click the
Start button and then click ComponentOne | Studio for WPF | Samples | WPF ControlExplorer.

System Requirements

System requirements include the following:

Operating Systems: Microsoft Windows® XP with Service Pack 2 (SP2)

Windows Vista™

Windows 2008 Server

Windows 7

Environments: .NET Framework 3.5 or later

Visual Studio® 2005 extensions for .NET Framework 2.0
November 2006 CTP

Visual Studio® 2008

Microsoft® Expression® ComboBox for WPF includes design-time support for
Expression Blend.

http://wpf.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=25047
http://wpf.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=25047

 3

Blend Compatibility:

Note: The C1.WPF.VisualStudio.Design.dll assembly is required by Visual Studio 2008 and the
C1.WPF.Expression.Design.dll assembly is required by Expression Blend. The C1.WPF.Expression.Design.dll
and C1.WPF.VisualStudio.Design.dll assemblies installed with ComboBox for WPF should always be placed in
the same folder as C1.WPF.dll; the DLLs should NOT be placed in the Global Assembly Cache (GAC).

Installing Demonstration Versions

If you wish to try ComponentOne ComboBox for WPF and do not have a serial number, follow the steps through
the installation wizard and use the default serial number.

The only difference between unregistered (demonstration) and registered (purchased) versions of our products is
that registered versions will stamp every application you compile so that a ComponentOne banner will not appear
when your users run the applications.

Uninstalling ComboBox for WPF

To uninstall ComponentOne Studio for WPF:

1. Open the Control Panel and select Add or Remove Programs (Programs and Features in Vista/7).

2. Select ComponentOne Studio for WPF and click the Remove button.

3. Click Yes to remove the program.

To uninstall ComponentOne Studio for WPF integrated help:

1. Open the Control Panel and select Add or Remove Programs (Programs and Features in Windows
7/Vista).

2. Select ComponentOne Studio for WPF Help and click the Remove button.

3. Click Yes to remove the integrated help.

End-User License Agreement
All of the ComponentOne licensing information, including the ComponentOne end-user license agreements,
frequently asked licensing questions, and the ComponentOne licensing model, is available online at
http://www.componentone.com/SuperPages/Licensing/.

Licensing FAQs
This section describes the main technical aspects of licensing. It may help the user to understand and resolve
licensing problems he may experience when using ComponentOne .NET and ASP.NET products.

What is Licensing?

Licensing is a mechanism used to protect intellectual property by ensuring that users are authorized to use software
products.

Licensing is not only used to prevent illegal distribution of software products. Many software vendors, including
ComponentOne, use licensing to allow potential users to test products before they decide to purchase them.

Without licensing, this type of distribution would not be practical for the vendor or convenient for the user.
Vendors would either have to distribute evaluation software with limited functionality, or shift the burden of
managing software licenses to customers, who could easily forget that the software being used is an evaluation
version and has not been purchased.

http://www.componentone.com/SuperPages/Licensing/
http://www.componentone.com/SuperPages/Licensing/

4

How does Licensing Work?

ComponentOne uses a licensing model based on the standard set by Microsoft, which works with all types of
components.

Note: The Compact Framework components use a slightly different mechanism for run-time licensing than the
other ComponentOne components due to platform differences.

When a user decides to purchase a product, he receives an installation program and a Serial Number. During the
installation process, the user is prompted for the serial number that is saved on the system. (Users can also enter
the serial number by clicking the License button on the About Box of any ComponentOne product, if available, or
by rerunning the installation and entering the serial number in the licensing dialog box.)

When a licensed component is added to a form or Web page, Visual Studio obtains version and licensing
information from the newly created component. When queried by Visual Studio, the component looks for
licensing information stored in the system and generates a run-time license and version information, which Visual
Studio saves in the following two files:

 An assembly resource file which contains the actual run-time license.

 A "licenses.licx" file that contains the licensed component strong name and version information.

These files are automatically added to the project.

In WinForms and ASP.NET 1.x applications, the run-time license is stored as an embedded resource in the
assembly hosting the component or control by Visual Studio. In ASP.NET 2.x applications, the run-time license
may also be stored as an embedded resource in the App_Licenses.dll assembly, which is used to store all run-time
licenses for all components directly hosted by WebForms in the application. Thus, the App_licenses.dll must
always be deployed with the application.

The licenses.licx file is a simple text file that contains strong names and version information for each of the
licensed components used in the application. Whenever Visual Studio is called upon to rebuild the application
resources, this file is read and used as a list of components to query for run-time licenses to be embedded in the
appropriate assembly resource. Note that editing or adding an appropriate line to this file can force Visual Studio
to add run-time licenses of other controls as well.

Note that the licenses.licx file is usually not shown in the Solution Explorer; it appears if you press the Show All
Files button in the Solution Explorer's Toolbox or, from Visual Studio's main menu, select Show All Files on the
Project menu.

Later, when the component is created at run time, it obtains the run-time license from the appropriate assembly
resource that was created at design time and can decide whether to simply accept the run-time license, to throw an
exception and fail altogether, or to display some information reminding the user that the software has not been
licensed.

All ComponentOne products are designed to display licensing information if the product is not licensed. None will
throw licensing exceptions and prevent applications from running.

Common Scenarios

The following topics describe some of the licensing scenarios you may encounter.

Creating components at design time

This is the most common scenario and also the simplest: the user adds one or more controls to the form, the
licensing information is stored in the licenses.licx file, and the component works.

Note that the mechanism is exactly the same for Windows Forms and Web Forms (ASP.NET) projects.

 5

Creating components at run time

This is also a fairly common scenario. You do not need an instance of the component on the form, but would like
to create one or more instances at run time.

In this case, the project will not contain a licenses.licx file (or the file will not contain an appropriate run-time
license for the component) and therefore licensing will fail.

To fix this problem, add an instance of the component to a form in the project. This will create the licenses.licx file
and things will then work as expected. (The component can be removed from the form after the licenses.licx file
has been created).

Adding an instance of the component to a form, then removing that component, is just a simple way of adding a
line with the component strong name to the licenses.licx file. If desired, you can do this manually using notepad
or Visual Studio itself by opening the file and adding the text. When Visual Studio recreates the application
resources, the component will be queried and its run-time license added to the appropriate assembly resource.

Inheriting from licensed components

If a component that inherits from a licensed component is created, the licensing information to be stored in the
form is still needed. This can be done in two ways:

 Add a LicenseProvider attribute to the component.

This will mark the derived component class as licensed. When the component is added to a form, Visual
Studio will create and manage the licenses.licx file and the base class will handle the licensing process as
usual. No additional work is needed. For example:
 [LicenseProvider(typeof(LicenseProvider))]
 class MyGrid: C1.Win.C1FlexGrid.C1FlexGrid
 {

// ...
 }

 Add an instance of the base component to the form.

This will embed the licensing information into the licenses.licx file as in the previous scenario and the
base component will find it and use it. As before, the extra instance can be deleted after the licenses.licx
file has been created.

Please note that ComponentOne licensing will not accept a run-time license for a derived control if the run-time
license is embedded in the same assembly as the derived class definition and the assembly is a DLL. This
restriction is necessary to prevent a derived control class assembly from being used in other applications without a
design-time license. If you create such an assembly, you will need to take one of the actions previously described
create a component at run time.

Using licensed components in console applications

When building console applications, there are no forms to add components to and therefore Visual Studio won't
create a licenses.licx file.

In these cases, create a temporary Windows Forms application and add all the desired licensed components to a
form. Then close the Windows Forms application and copy the licenses.licx file into the console application
project.

Make sure the licenses.licx file is configured as an embedded resource. To do this, right-click the licenses.licx file
in the Solution Explorer window and select Properties. In the Properties window, set the Build Action property to
Embedded Resource.

6

Using licensed components in Visual C++ applications

There is an issue in VC++ 2003 where the licenses.licx is ignored during the build process; therefore, the licensing
information is not included in VC++ applications.

To fix this problem, extra steps must be taken to compile the licensing resources and link them to the project. Note
the following:

1. Build the C++ project as usual. This should create an EXE file and also a licenses.licx file with licensing
information in it.

2. Copy the licenses.licx file from the application directory to the target folder (Debug or Release).

3. Copy the C1Lc.exe utility and the licensed DLLs to the target folder. (Don't use the standard lc.exe, it has
bugs.)

4. Use C1Lc.exe to compile the licenses.licx file. The command line should look like this:
c1lc /target:MyApp.exe /complist:licenses.licx /i:C1.Win.C1FlexGrid.dll

5. Link the licenses into the project. To do this, go back to Visual Studio, right-click the project, select
Properties, and go to the Linker/Command Line option. Enter the following:
/ASSEMBLYRESOURCE:Debug\MyApp.exe.licenses

6. Rebuild the executable to include the licensing information in the application.

Using licensed components with automated testing products

Automated testing products that load assemblies dynamically may cause them to display license dialog boxes. This
is the expected behavior since the test application typically does not contain the necessary licensing information
and there is no easy way to add it.

This can be avoided by adding the string "C1CheckForDesignLicenseAtRuntime" to the AssemblyConfiguration
attribute of the assembly that contains or derives from ComponentOne controls. This attribute value directs the
ComponentOne controls to use design-time licenses at run time.

For example:
#if AUTOMATED_TESTING

[AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime")]
#endif

public class MyDerivedControl : C1LicensedControl
{

// ...
}

Note that the AssemblyConfiguration string may contain additional text before or after the given string, so the
AssemblyConfiguration attribute can be used for other purposes as well. For example:

[AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime,BetaVersion")]

THIS METHOD SHOULD ONLY BE USED UNDER THE SCENARIO DESCRIBED. It requires a design-
time license to be installed on the testing machine. Distributing or installing the license on other computers is a
violation of the EULA.

Troubleshooting

We try very hard to make the licensing mechanism as unobtrusive as possible, but problems may occur for a
number of reasons.

Below is a description of the most common problems and their solutions.

 7

I have a licensed version of a ComponentOne product but I still get the splash screen when I run my
project.

If this happens, there may be a problem with the licenses.licx file in the project. It either doesn't exist, contains
wrong information, or is not configured correctly.

First, try a full rebuild (Rebuild All from the Visual Studio Build menu). This will usually rebuild the correct
licensing resources.

If that fails follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and open it. If prompted, continue to open the file.

4. Change the version number of each component to the appropriate value. If the component does not
appear in the file, obtain the appropriate data from another licenses.licx file or follow the alternate
procedure following.

5. Save the file, then close the licenses.licx tab.

6. Rebuild the project using the Rebuild All option (not just Rebuild).

Alternatively, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and delete it.

4. Close the project and reopen it.

5. Open the main form and add an instance of each licensed control.

6. Check the Solution Explorer window, there should be a licenses.licx file there.

7. Rebuild the project using the Rebuild All option (not just Rebuild).

For ASP.NET 2.x applications, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Find the licenses.licx file and right-click it.

3. Select the Rebuild Licenses option (this will rebuild the App_Licenses.licx file).

4. Rebuild the project using the Rebuild All option (not just Rebuild).

I have a licensed version of a ComponentOne product on my Web server but the components still
behave as unlicensed.

There is no need to install any licenses on machines used as servers and not used for development.

The components must be licensed on the development machine, therefore the licensing information will be saved
into the executable (.exe or .dll) when the project is built. After that, the application can be deployed on any
machine, including Web servers.

For ASP.NET 2.x applications, be sure that the App_Licenses.dll assembly created during development of the
application is deployed to the bin application bin directory on the Web server.

If your ASP.NET application uses WinForms user controls with constituent licensed controls, the runtime license
is embedded in the WinForms user control assembly. In this case, you must be sure to rebuild and update the user
control whenever the licensed embedded controls are updated.

8

I downloaded a new build of a component that I have purchased, and now I'm getting the splash screen
when I build my projects.

Make sure that the serial number is still valid. If you licensed the component over a year ago, your subscription
may have expired. In this case, you have two options:

Option 1 – Renew your subscription to get a new serial number.

If you choose this option, you will receive a new serial number that you can use to license the new components
(from the installation utility or directly from the About Box).

The new subscription will entitle you to a full year of upgrades and to download the latest maintenance builds
directly from http://prerelease.componentone.com/.

Option 2 – Continue to use the components you have.

Subscriptions expire, products do not. You can continue to use the components you received or downloaded while
your subscription was valid.

Technical Support
ComponentOne offers various support options. For a complete list and a description of each, visit the
ComponentOne Web site at http://www.componentone.com/SuperProducts/SupportServices/.

Some methods for obtaining technical support include:

 Online Support via HelpCentral
ComponentOne HelpCentral provides customers with a comprehensive set of technical resources in the
form of FAQs, samples, Version Release History, Articles, searchable Knowledge Base, searchable Online
Help and more. We recommend this as the first place to look for answers to your technical questions.

 Online Support via our Incident Submission Form
This online support service provides you with direct access to our Technical Support staff via an online
incident submission form. When you submit an incident, you'll immediately receive a response via e-mail
confirming that you've successfully created an incident. This email will provide you with an Issue
Reference ID and will provide you with a set of possible answers to your question from our
Knowledgebase. You will receive a response from one of the ComponentOne staff members via e-mail in
2 business days or less.

 Peer-to-Peer Product Forums and Newsgroups
ComponentOne peer-to-peer product forums and newsgroups are available to exchange information, tips,
and techniques regarding ComponentOne products. ComponentOne sponsors these areas as a forum for
users to share information. While ComponentOne does not provide direct support in the forums and
newsgroups, we periodically monitor them to ensure accuracy of information and provide comments
when appropriate. Please note that a ComponentOne User Account is required to participate in the
ComponentOne Product Forums.

 Installation Issues
Registered users can obtain help with problems installing ComponentOne products. Contact technical
support by using the online incident submission form or by phone (412.681.4738). Please note that this
does not include issues related to distributing a product to end-users in an application.

 Documentation
Microsoft integrated ComponentOne documentation can be installed with each of our products, and
documentation is also available online. If you have suggestions on how we can improve our
documentation, please email the Documentation team. Please note that e-mail sent to the Documentation
team is for documentation feedback only. Technical Support and Sales issues should be sent directly to
their respective departments.

http://prerelease.componentone.com/
http://www.componentone.com/SuperProducts/SupportServices/
http://helpcentral.componentone.com/
http://helpcentral.componentone.com/ProductResources.aspx?View=FAQs
http://helpcentral.componentone.com/ProductResources.aspx?View=SAMPLES
http://helpcentral.componentone.com/ProductResources.aspx?View=VersionHistory
http://helpcentral.componentone.com/Articles.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Forums.aspx

 9

Note: You must create a ComponentOne Account and register your product with a valid serial number to obtain
support using some of the above methods.

Redistributable Files
ComponentOne ComboBox for WPF is developed and published by ComponentOne LLC. You may use it to
develop applications in conjunction with Microsoft Visual Studio or any other programming environment that
enables the user to use and integrate the control(s). You may also distribute, free of royalties, the following
Redistributable Files with any such application you develop to the extent that they are used separately on a single
CPU on the client/workstation side of the network:

 C1.WPF.dll

In addition, the following file from the Microsoft WPF Toolkit is also installed and is redistributable:

 WPFToolkit.dll

Site licenses are available for groups of multiple developers. Please contact Sales@ComponentOne.com for details.

About this Documentation
You can create your applications using Microsoft Expression Blend or Visual Studio, but Blend is currently the
only design-time environment that allows users to design XAML documents visually. In this documentation, we
will use the Design workspace of Blend for most examples.

Acknowledgements

Microsoft, Windows, Windows Vista, Visual Studio, and Microsoft Expression are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

ComponentOne

If you have any suggestions or ideas for new features or controls, please call us or write:

Corporate Headquarters

ComponentOne LLC

201 South Highland Avenue

3rd Floor

Pittsburgh, PA 15206 • USA

412.681.4343

412.681.4384 (Fax)

http://www.componentone.com/

ComponentOne Doc-To-Help

This documentation was produced using ComponentOne Doc-To-Help® Enterprise.

XAML and XAML Namespaces
XAML is a declarative XML-based language that is used as a user interface markup language in Windows
Presentation Foundation (WPF) and the .NET Framework 3.0. With XAML you can create a graphically rich
customized user interface, perform data binding, and much more. For more information on XAML and the .NET
Framework 3.0, please see http://www.microsoft.com.

XAML Namespaces

mailto:sales@componentone.com
http://www.componentone.com/
http://www.componentone.com/
http://www.componentone.com/
http://www.doctohelp.com/
http://www.microsoft.com/

10

Namespaces organize the objects defined in an assembly. Assemblies can contain multiple namespaces, which can
in turn contain other namespaces. Namespaces prevent ambiguity and simplify references when using large groups
of objects such as class libraries.

When you create a Microsoft Expression Blend project, a XAML file is created for you and some initial
namespaces are specified:

Namespace Description

xmlns="http://schemas.microsoft.com/win
fx/2006/xaml/presentation"

This is the default Windows Presentation Foundation
namespace.

xmlns:x="http://schemas.microsoft.com/
winfx/2006/xaml"

This is a XAML namespace that is mapped to the x: prefix.
The x: prefix provides a quick, easy way to reference the
namespace, which defines many commonly-used features
necessary for WPF applications.

When you add a C1ComboBox control to the window in Microsoft Expression Blend or Visual Studio, Blend or
Visual Studio automatically creates an XML namespace for the control. The namespace looks like the following:

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

The namespace value is c1. This is a unified namespace; once this is in the project, all ComponentOne WPF
controls found in your references will be accessible through XAMl (and Intellisense). Note that you still need to
add references to the assemblies for each control you need to use.

The namespace value is my and the namespace is C1.WPF.Extended.

You can also choose to create your own custom name for the namespace. For example:
xmlns:MyMTB="clr-namespace:C1.WPF;assembly=C1.WPF

You can now use your custom namespace when assigning properties, methods, and events. For example, use the
following XAML to add a border around the panel:

<MyMTB:C1ComboBox Name="c1ComboBox1" BorderThickness="10,10,10,10">

Creating a Microsoft Blend Project
To create a new Blend project, complete the following steps:

1. From the File menu, select New Project or click New Project in the Blend startup window.

The Create New Project dialog box opens.

2. Make sure WPF Application (.exe) is selected and enter a name for the project in the Name text box. The
WPF Application (.exe) creates a project for a Windows-based application that can be built and run while
being designed.

3. Select the Browse button to specify a location for the project.

4. Select a language from the Language drop-down box and click OK.

 11

A new Blend project with a XAML window is created.

Creating a .NET Project in Visual Studio
To create a new .NET project in Visual Studio 2008, complete the following steps:

1. From the File menu in Microsoft Visual Studio 2008, select New Project.

The New Project dialog box opens.

2. Choose the appropriate .NET Framework from the Framework drop-down box in the top-right of the
dialog box.

3. Under Project types, select either Visual Basic or Visual C#.

Note: In Visual Studio 2005 select NET Framework 3.0 under Visual Basic or Visual C# in the Project
types menu.

4. Choose WPF Application from the list of Templates in the right pane.

12

5. Enter a name for your application in the Name field and click OK.

A new Microsoft Visual Studio .NET WPF project is created with a XAML file that will be used to define
your user interface and commands in the application.

Note: You can create your WPF applications using Microsoft Expression Blend or Visual Studio, but Blend is
currently the only design-time environment that allows users to design XAML documents visually. In this
documentation, Blend will be used for most examples.

Creating an XAML Browser Application (XBAP) in Visual Studio
To create a new XAML Browser Application (XBAP) in Visual Studio 2008, complete the following steps:

1. From the File menu in Microsoft Visual Studio 2008, select New Project. The New Project dialog box
opens.

2. Choose the appropriate .NET Framework from the Framework drop-down box in the top-right of the
dialog box.

 13

3. Under Project types, select either Visual Basic or Visual C#.

4. Choose WPF Browser Application from the list of Templates in the right pane.

Note: If using Visual Studio 2005, you may need to select XAML Browser Application (WPF) after
selecting NET Framework 3.0 under Visual Basic or Visual C# in the left-side menu.

5. Enter a name for your application in the Name field and click OK.

A new Microsoft Visual Studio .NET WPF Browser Application project is created with a XAML file that
will be used to define your user interface and commands in the application.

Adding the ComboBox for WPF Components to a Blend Project
In order to use C1ComboBox or another ComponentOne ComboBox for WPF component in the Design
workspace of Blend, you must first add a reference to the C1.WPF.Extended assembly and then add the
component from Blend's Asset Library.

To add a reference to the assembly:

1. Select Project | Add Reference.

2. Browse to find the C1.WPF.dll assembly installed with ComboBox for WPF.

Note: The C1.WPF.dll file is installed to C:\Program Files\ComponentOne\Studio for WPF\bin by
default.

3. Select C1.WPF.dll and click Open. A reference is added to your project.

To add a component from the Asset Library:

1. Once you have added a reference to the C1.WPF.Extended assembly, click the Asset Library button

in the Blend Toolbox. The Asset Library appears:

14

2. Click the Custom Controls tab. All of the ComboBox for WPF main and auxiliary components are listed
here.

3. Select C1ComboBox. The component will appear in the Toolbox above the Asset Library button.

4. Double-click the C1ComboBox component in the Toolbox to add it to Window1.xaml.

Adding the ComboBox for WPF Components to a Visual Studio Project
When you install ComponentOne ComboBox for WPF the C1ComboBox control should be added to your Visual
Studio Toolbox. You can also manually add ComponentOne controls to the Toolbox.

ComponentOne ComboBox for WPF provides the following control:

 C1ComboBox

To use a ComboBox for WPF panel or control, add it to the window or add a reference to the C1.WPF assembly
to your project.

Manually Adding ComboBox for WPF to the Toolbox

When you install ComboBox for WPF, the following ComboBox for WPF control and panel will appear in the
Visual Studio Toolbox customization dialog box:

 C1ComboBox

To manually add the C1ComboBox control to the Visual Studio Toolbox, complete the following steps:

1. Open the Visual Studio IDE (Microsoft Development Environment). Make sure the Toolbox is visible
(select Toolbox in the View menu, if necessary) and right-click the Toolbox to open its context menu.

2. To make ComboBox for WPF components appear on its own tab in the Toolbox, select Add Tab from
the context menu and type in the tab name, C1WPFComboBox, for example.

3. Right-click the tab where the component is to appear and select Choose Items from the context menu.

The Choose Toolbox Items dialog box opens.

4. In the dialog box, select the WPF Components tab.

 15

5. Sort the list by Namespace (click the Namespace column header) and select the check boxes for components
belonging to the C1.WPF.Extended namespace. Note that there may be more than one component for
each namespace.

Adding ComboBox for WPF to the Window

To add ComponentOne ComboBox for WPF to a window or page, complete the following steps:

1. Add the C1ComboBox control to the Visual Studio Toolbox.

2. Double-click C1ComboBox or drag the control onto the window.

Adding a Reference to the Assembly

To add a reference to the ComboBox for WPF assembly, complete the following steps:

1. Select the Add Reference option from the Project menu of your project.

2. Select the ComponentOne ComboBox for WPF assembly from the list on the .NET tab or on the Browse
tab, browse to find the C1.WPF.dll assembly and click OK.

3. Double-click the window caption area to open the code window. At the top of the file, add the following
Imports statements (using in C#):

Imports C1.WPF

This makes the objects defined in the ComboBox for WPF assembly visible to the project.

 17

Key Features
ComponentOne ComboBox for WPF allows you to create customized, rich applications. Make the most of
ComboBox for WPF by taking advantage of the following key features:

 Auto-Searchable Drop-Down List

Locate items quickly by typing the first few characters. ComboBox will automatically search the list and
select the items for you as you type.

 Populate the Drop-down List with Data Templates

ComboBox fully supports data templates, making it easy to add any visual elements to the list items. This
includes text, images, and any other controls. The control uses element virtualization, so it always loads
quickly, even when populated with hundreds of items.

 Time-tested, Familiar Object Model

ComboBox has a rich object model based on the WPF ComboBox control. You can easily specify whether
the end user is able to enter items that are not on the drop-down list, get or set the index of the selected
item, the height of the drop-down list, and more.

ComboBox for WPF Quick Start
The following quick start guide is intended to get you up and running with ComboBox for WPF. In this quick
start, you'll start in Visual Studio 2008 to create a new project with two C1ComboBox controls. The first control
will be populated with a list of three items that, when clicked, will determine the list that appears in the second
combo box.

Step 1 of 4: Creating an Application with a C1ComboBox Control
In this step, you'll begin in Visual Studio 2008 to create a WPF application using ComboBox for WPF.

Complete the following steps:

http://www.componentone.com/newimages/products/screenshots/studiosilverlight/c1combobox_countries.png
http://www.componentone.com/newimages/products/screenshots/studiosilverlight/c1combobox_countries.png

18

1. In Visual Studio 2008, select File | New | Project.

2. In the New Project dialog box, select a language in the left pane, and in the templates list select WPF
Application.

3. Enter a Name for your project and click OK.

4. Add two C1ComboBox controls to the project by completing the following steps:

a. In the Toolbox, double-click the StackPanel icon to add it to the project.

b. Select the StackPanel control.

c. Double-click the C1ComboBox icon to add the control to the StackPanel.

d. Repeat steps 4b and 4c to add another C1ComboBox to the StackPanel. The project resembles the

following:

5. Set the StackPanel control’s properties as follows:

 Set the Width property to "300".

 Set the Height property to "35".

 Set the Orientation property to Horizontal.

6. Set c1ComboBox1’s properties as follows:

 Set the Width property to "150".

 Set the Height property to "35".

 Set the Name property to “Category”

7. Set c1ComboBox2’s properties as follows:

 Set the Width property to "150".

 Set the Height property to "35".

 Set the Name property to “Shows”.

The project resembles the following:

 19

You have completed the first step of the quick start by creating a WPF project and adding two C1ComboBox
controls to it. In the next step, you'll add items to the first C1ComboBox control.

Step 2 of 4: Adding Items to the First C1ComboBox Control
In the last step, you created a project and added two C1ComboBox controls to it. In this step, you will add three
items to the first combo box.

Complete the following steps:

1. Select the first C1ComboBox, Category.

2. In the Properties window, click the Items ellipsis button to open the Collection Editor: Items dialog box.

3. Click Add three times to add three C1ComboBoxItems to the control. Three C1ComboBoxItems named
c1ComboBoxItem1, c1ComboBoxItem2, and c1ComboBoxItem3, are added to the control.

4. Set c1ComboBoxItem1’s properties as follows:

 Set the Content property to "Comedy".

 Set the Height property to "25".

5. Set c1ComboBoxItem2’s properties as follows:

 Set the Content property to "Drama".

 Set the Height property to "25".

6. Set C1ComboBoxItem3’s properties as follows:

 Set the Content property to "Science Fiction".

 Set the Height property to "25".

7. Click OK to close the Collection Editor: Items dialog box.

In this step, you added items to the first combo box. In the next step, you will add code to the project that will
populate the second combo box with items when a user selects an item in the first combo box.

Step 3 of 4: Adding Code to the Control
In the last step, you added items to the first combo box. In this step, you will add code to the project that will
populate the second combo box according to the option the user selects in the first combo box.

1. Select the first C1ComboBox control (“Category”).

2. In the Properties window, click the Events button.

3. Double-click the inside the SelectedIndexChanged text box to add the
C1ComboBox1_SelectedIndexChanged event handler.

The MainPage.xaml.cs page opens.

20

4. Import the following namespace into your project:

 Visual Basic

Imports System.Collections.Generic

 C#

using System.Collections.Generic;

5. Add the following code to the C1ComboBox1_SelectedIndexChanged event handler:

 Visual Basic

'Create List for Comedy selection

Dim dropDownList_Comedy As New List(Of String)()

dropDownList_Comedy.Add("Absolutely Fabulous")

dropDownList_Comedy.Add("The Colbert Report")

dropDownList_Comedy.Add("The Daily Show")

dropDownList_Comedy.Add("The Office")

'Create List for Drama selection

Dim dropDownList_Drama As New List(Of String)()

dropDownList_Drama.Add("Breaking Bad")

dropDownList_Drama.Add("Desperate Housewives")

dropDownList_Drama.Add("Mad Men")

dropDownList_Drama.Add("The Sopranos")

'Create List for Science Fiction selection

Dim dropDownList_SciFi As New List(Of String)()

dropDownList_SciFi.Add("Battlestar Galactica")

dropDownList_SciFi.Add("Caprica")

dropDownList_SciFi.Add("Stargate")

dropDownList_SciFi.Add("Star Trek")

'Check for SelectedIndex value and assign appropriate list to 2nd combo
box

If Category.SelectedIndex = 0 Then

Shows.ItemsSource = dropDownList_Comedy

ElseIf Category.SelectedIndex = 1 Then

Shows.ItemsSource = dropDownList_Drama

ElseIf Category.SelectedIndex = 2 Then

Shows.ItemsSource = dropDownList_SciFi

End If

 21

 C#

//Create List for Comedy selection

List<string> dropDownList_Comedy = new List<string>();

dropDownList_Comedy.Add("Absolutely Fabulous");

dropDownList_Comedy.Add("The Colbert Report");

dropDownList_Comedy.Add("The Daily Show");

dropDownList_Comedy.Add("The Office");

//Create List for Drama selection

List<string> dropDownList_Drama = new List<string>();

dropDownList_Drama.Add("Breaking Bad");

dropDownList_Drama.Add("Desperate Housewives");

dropDownList_Drama.Add("Mad Men");

dropDownList_Drama.Add("The Sopranos");

//Create List for Science Fiction selection

List<string> dropDownList_SciFi = new List<string>();

dropDownList_SciFi.Add("Battlestar Galactica");

dropDownList_SciFi.Add("Caprica");

dropDownList_SciFi.Add("Stargate");

dropDownList_SciFi.Add("Star Trek");

//Check for SelectedIndex value and assign appropriate list to 2nd
combo box

if (Category.SelectedIndex == 0)

{

 Shows.ItemsSource = dropDownList_Comedy;

}

else if (Category.SelectedIndex == 1)

{

 Shows.ItemsSource = dropDownList_Drama;

}

else if (Category.SelectedIndex ==2)

{

 Shows.ItemsSource = dropDownList_SciFi;

}

In the next step, you will run the project and observe the results of this quick start.

22

Step 4 of 4: Running the Project
In the previous three steps, you created a WPF project with two combo boxes, added items to the first combo box, and
wrote code that will populate the second combo box with items once an item is selected in the first combo box. In this
step, you will run the project and observe the results of this quick start.

Complete the following steps:

1. Press F5 to run the project. The project loads with two blank combo boxes:

2. Click the second combo box's drop-down arrow and observe that the drop-down list is empty:

3. Click the first combo box's drop-down arrow and select Comedy.

4. Click the second combo box's drop-down arrow and observe that the drop-down list features the following
items:

5. Click the first combo box's drop-down arrow and select Drama.

6. Click the second combo box's drop-down arrow and observe that the drop-down list features the following
items:

7. Click the first combo box's drop-down arrow and select Science Fiction.

8. Click the second combo box's drop-down arrow and observe that the drop-down list features the following
items:

 23

Congratulations! You have completed the ComboBox for WPF quick start.

Working with the C1ComboBox
Control
This section provides an overview of C1ComboBox control basics. If you haven't used the control, we recommend
starting with the ComboBox for WPF Quick Start (page 17) topic.

C1ComboBox Elements
The C1ComboBox control is a flexible control used to display data in a drop-down list. It is essentially the
combination of two controls: a text box that allows users to enter a selection, and a list box that allows users to
select from a series of list options. The following image diagrams the C1ComboBox control.

See below for a description of each C1ComboBox element.

 Selection Box

The selection box serves two purposes: it allows users to enter the list item they're searching for directly
into the text box, and it displays the currently selected item. The content of this box is equal to the content
of the C1ComboBox control's selected index item.

 Drop-Down Button

The drop-down button reveals the drop-down list when clicked.

 Drop-Down List

The drop-down list consists of a series of list items (see below); it can contain as little or as many list items
as you need. If the number of items exceeds the size of the drop-down list, a scrollbar will automatically
appear.

24

 List Items

Each list item in a drop-down list is represented by the C1ComboBoxItem class. List items can contain
text, pictures, and even controls.

 Selected Item

The selected item in a list can be fixed by the developer or chosen by a user at run-time. The value of a
selected list item's IsSelected property is True.

C1ComboBox Features
The following topics detail a few of the C1ComboBox control's features. For more information on utilizing these
features, see the ComboBox for WPF Task-Based Help (page 31) section.

Drop-Down List Direction

By default, when the user clicks the C1ComboBox control's drop-down arrow at run-time, the drop-down list will
appear below the control; if that is not possible, it will appear above the control. You can, however, change the
direction in which the drop-down list appears by setting the DropDownDirection property to one of the following
four options:

Event Description

BelowOrAbove
(default)

Tries to open the drop-down list below the header. If it is not
possible tries to open above it.

AboveOrBelow Tries to open the drop-down list above the header. If it is not
possible tries to open below it.

ForceBelow Forces the drop-down list to open below the header.

ForceAbove Forces the drop-down list to open above the header.

For instructions about how to change the drop-down direction, see Changing the Drop-Down List Direction (page
34).

Item Selection

The SelectedIndex property determines which item is selected in a drop-down list. The SelectedIndex is based on a
zero-based index, meaning that 0 represents the first C1ComboBoxItem, 1 represents the second
C1ComboBoxItem, and so on. In the image below, the SelectedIndex is set to 2, which selects the third
C1ComboBoxItem.

 25

AutoComplete

The C1ComboBox control features an auto-completion feature, which selects a list item based on user input. As
the user types, the list item is loaded into the selection box, as seen in the following image:

The user only has to press ENTER to select the list item suggested by the AutoComplete feature.

The AutoComplete feature can be disabled by setting the AutoComplete property to False. To learn how to disable
the feature at design time, in XAML, and in code, see Disabling AutoComplete (page 35).

Drop-Down List Sizing

By default, the size of the drop-down list is determined by the width of the widest C1ComboBoxItem item and the
collective height of all of the C1ComboBoxItem items, as the DropDownWidth and DropDownHeight properties
are both set to NaN.

You can control the maximum width and maximum height of the drop-down list by setting the C1ComboBox
control's MaxDropDownWidth and MaxDropDownHeight properties. Setting these properties ensures that the
area of the drop-down list can never expand to a larger area than you've specified. If the width or height of the list
exceeds the specified maximum height and width, scrollbars will automatically be added to the drop-down list.

For task-based help on drop-down list sizing, see Setting the Maximum Height and Maximum Width of the Drop-
Down List (page 36).

ComboBox for WPF Layout and
Appearance
The following topics detail how to customize the C1ComboBox control's layout and appearance. You can use
built-in layout options to lay your controls out in panels such as Grids or Canvases. Themes allow you to
customize the appearance of the grid and take advantage of WPF's XAML-based styling. You can also use
templates to format and layout the control and to customize the control's actions.

ComponentOne ClearStyle Technology
ComponentOne ClearStyle™ technology is a new, quick and easy approach to providing Silverlight and WPF
control styling. ClearStyle allows you to create a custom style for a control without having to deal with the hassle
of XAML templates and style resources.

Currently, to add a theme to all standard WPF controls, you must create a style resource template. In Microsoft
Visual Studio, this process can be difficult; this is why Microsoft introduced Expression Blend to make the task a
bit easier. Having to jump between two environments can be a bit challenging to developers who are not familiar
with Blend or do not have the time to learn it. You could hire a designer, but that can complicate things when your
designer and your developers are sharing XAML files.

That's where ClearStyle comes in. With ClearStyle the styling capabilities are brought to you in Visual Studio in
the most intuitive manner possible. In most situations you just want to make simple styling changes to the controls
in your application so this process should be simple. For example, if you just want to change the row color of your
data grid this should be as simple as setting one property. You shouldn't have to create a full and complicated-
looking template just to simply change a few colors.

26

How ClearStyle Works

Each key piece of the control's style is surfaced as a simple color property. This leads to a unique set of style
properties for each control. For example, a Gauge has PointerFill and PointerStroke properties, whereas a
DataGrid has SelectedBrush and MouseOverBrush for rows.

Let's say you have a control on your form that does not support ClearStyle. You can take the XAML resource
created by ClearStyle and use it to help mold other controls on your form to match (such as grabbing exact colors).
Or let's say you'd like to override part of a style set with ClearStyle (such as your own custom scrollbar). This is
also possible because ClearStyle can be extended and you can override the style where desired.

ClearStyle is intended to be a solution to quick and easy style modification but you're still free to do it the old
fashioned way with ComponentOne's controls to get the exact style needed. ClearStyle does not interfere with
those less common situations where a full custom design is required.

C1ComboBox and C1ComboBoxItem ClearStyle Properties

ComboBox for WPF supports ComponentOne's new ClearStyle technology that allows you to easily change
control colors without having to change control templates. By just setting a few color properties you can quickly
style the entire grid.

The following table outlines the brush properties of the C1ComboBox control:

Brush Description

Background Gets or sets the brush of the control’s background.

ButtonBackground Gets or sets the brush of the drop-down button’s background.

ButtonForeground Gets or sets the brush of the drop-down button’s foreground.

FocusBrush Gets or sets the brush for the control when it has focus.

MouseOverBrush Gets or sets the brush for the control when it is moused over.

PressedBrush Gets or sets the brush for the control when it is pressed.

SelectedBackground Gets or sets the brush of the background for the selected

C1ComboBoxItem.

The following table outlines the brush properties of the C1ComboBoxItem control:

Brush Description

Background Gets or sets the brush of the control’s background.

You can completely change the appearance of the C1ComboBox and C1ComboBoxItem controls by setting a few
properties, such as the C1ComboBox control’s ButtonBackground property, which sets the background color for
the control’s drop-down arrow. For example, if you set the C1ComboBox control’s ButtonBackground property
to "#FFC500FF", each header in the C1ComboBox control would appear similar to the following:

It’s that simple with ComponentOne’s ClearStyle technology. For more information on ClearStyle, see the
ComponentOne ClearStyle Technology (page 25) topic.

 27

ComboBox for WPF Appearance Properties
ComponentOne ComboBox for WPF includes several properties that allow you to customize the appearance of
the control. You can change the appearance of the text displayed in the control and customize graphic elements of
the control. The following topics describe some of these appearance properties.

Text Properties

The following properties let you customize the appearance of text in the combo box control.

Property Description

FontFamily Gets or sets the font family of the control. This is a
dependency property.

FontSize Gets or sets the font size. This is a dependency
property.

FontStretch Gets or sets the degree to which a font is condensed or
expanded on the screen. This is a dependency property.

FontStyle Gets or sets the font style. This is a dependency
property.

FontWeight Gets or sets the weight or thickness of the specified
font. This is a dependency property.

TextAlignment Gets or sets how the text should be aligned in the drop-
down list. This is a dependency property.

Content Positioning Properties

The following properties let you customize the position of header and content area content in the C1ComboBox
control.

Property Description

HorizontalContentAlignment Gets or sets the horizontal alignment of the
control's content. This is a dependency
property.

VerticalContentAlignment Gets or sets the vertical alignment of the
control's content. This is a dependency
property.

Color Properties

The following properties let you customize the colors used in the control itself.

Property Description

Background Gets or sets a brush that describes the background of a

control. This is a dependency property.

Foreground Gets or sets a brush that describes the foreground color.

This is a dependency property.

Border Properties

The following properties let you customize the control's border.

http://msdn2.microsoft.com/en-us/library/ms592513
http://msdn2.microsoft.com/en-us/library/ms592514
http://msdn2.microsoft.com/en-us/library/ms592515
http://msdn2.microsoft.com/en-us/library/ms592516
http://msdn2.microsoft.com/en-us/library/ms592517
http://msdn2.microsoft.com/en-us/library/ms592510
http://msdn2.microsoft.com/en-us/library/ms592518

28

Property Description

BorderBrush Gets or sets a brush that describes the border

background of a control. This is a dependency property.

BorderThickness Gets or sets the border thickness of a control. This is a

dependency property.

Size Properties

The following properties let you customize the size of the C1ComboBox control.

Property Description

Height Gets or sets the suggested height of the element. This is

a dependency property.

MaxHeight Gets or sets the maximum height constraint of the

element. This is a dependency property.

MaxWidth Gets or sets the maximum width constraint of the

element. This is a dependency property.

MinHeight Gets or sets the minimum height constraint of the

element. This is a dependency property.

MinWidth Gets or sets the minimum width constraint of the
element. This is a dependency property.

Width Gets or sets the width of the element. This is a
dependency property.

DropDownHeight Gets or sets the height of the dropdown (set to
Double.NaN to size automatically).

DropDownWidth Gets or sets the width of the drop-down list (set to
Double.NaN to size automatically).

MaxDropDownHeight Gets or sets maximum height constraint of the drop-
down box.

MaxDropDownWidth Gets or sets maximum width constraint of the drop-down
box.

Templates
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide
your own UI for data managed by ComponentOne ComboBox for WPF. Extensible Application Markup
Language (XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to
designing your UI without having to write code.

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1ComboBox control and, in the menu,
selecting Edit Template. Select Edit a Copy to create an editable copy of the current template or select Create
Empty to create a new blank template.

http://msdn2.microsoft.com/en-us/library/ms592511
http://msdn2.microsoft.com/en-us/library/ms592512
http://msdn2.microsoft.com/en-us/library/ms600880
http://msdn2.microsoft.com/en-us/library/ms600891
http://msdn2.microsoft.com/en-us/library/ms600892
http://msdn2.microsoft.com/en-us/library/ms600893
http://msdn2.microsoft.com/en-us/library/ms600894
http://msdn2.microsoft.com/en-us/library/ms600906

 29

If you want to edit the C1ComboBoxItem template, simply select the C1ComboBoxItem and, in the menu, select
Edit Template. Select Edit a Copy to create an editable copy of the current template or Create Empty, to create a
new blank template.

Note: If you create a new template through the menu, the template will automatically be linked to that template's
property. If you manually create a template in XAML you will have to link the appropriate template property to the
template you've created.

Note that you can use the Template property to customize the template.

Additional ComboBox Templates

In addition to the default templates, the C1ComboBox control includes a few additional templates. These
additional templates can also be accessed in Microsoft Expression Blend – in Blend select the C1ComboBox
control and, in the menu, select Edit Additional Templates. Choose a template, and select Create Empty.

Item Templates
ComponentOne ComboBox for WPF's combo box control is an ItemsControls that serves as a container for other
elements. As such, the control includes templates to customize items places within the combo box. These
templates include an ItemTemplate, an ItemsPanel, and an ItemContainerStyle template. You use the
ItemTemplate to specify the visualization of the data objects, the ItemsPanel to define the panel that controls the
layout of items, and the ItemStyleContainer to set the style of all container items.

Accessing Templates

You can access these templates in Microsoft Expression Blend by selecting the C1ComboBox control and, in the
menu, selecting Edit Additional Templates. Choose Edit Generated Items (ItemTemplate), Edit Layout of
Items (ItemsPanel), or Edit Generated Item Container (ItemStyleContainer) and select Create Empty to create a
new blank template or Edit a Copy.

A dialog box will appear allowing you to name the template and determine where to define the template.

http://msdn2.microsoft.com/en-us/library/ms592524
http://msdn.microsoft.com/en-us/library/system.windows.controls.itemscontrol.itemtemplate.aspx
http://msdn.microsoft.com/en-us/library/system.windows.controls.itemscontrol.itemspanel.aspx

 31

ComboBox for WPF Task-Based Help
The task-based help assumes that you are familiar with programming in Visual Studio .NET and know how to use
the C1ComboBox control in general. If you are unfamiliar with the ComponentOne ComboBox for WPF
product, please see the ComboBox for WPF quick start first.

Each topic in this section provides a solution for specific tasks using the ComponentOne ComboBox for WPF
product.

Each task-based help topic also assumes that you have created a new WPF project.

Working with ComboBox Items
The following topics illustrate several ways to add list items to the C1ComboBox control.

Adding ComboBox Items in the Designer

In this topic, you will learn how to add items to the C1ComboBox control in Expression Blend. This method is
useful whenever you're creating a static combo box with just a few items.

Complete the following steps:

1. In the Properties window, click the Items ellipsis button to open the Collection Editor: Items dialog
box.

2. Click Add to add a C1ComboBoxItem to the C1ComboBox control.

This Topic Illustrates the Following:

With the program running, click the drop-down arrow and observe that one item appears in the drop-down list as
follows:

Adding ComboBox Items in XAML

In this topic, you will learn how to add items to the C1ComboBox control in XAML markup. This method is
useful whenever you're creating a static combo box with just a few items.

Complete the following steps:

1. To add items to the C1ComboBox control, add the following XAML markup between the
<c1:C1ComboBox> and </c1:C1ComboBox> tags:

<c1:C1ComboBoxItem Height="25" Content="C1ComboBoxItem"/>

<c1:C1ComboBoxItem Height="25" Content="C1ComboBoxItem"/>

<c1:C1ComboBoxItem Height="25" Content="C1ComboBoxItem"/>

<c1:C1ComboBoxItem Height="25" Content="C1ComboBoxItem"/>

32

2. Run the program.

3. Click the drop-down arrow and observe that four items appear in the drop-down list. The result resembles
the following image:

This Topic Illustrates the Following:

With the program running, click the drop-down arrow and observe that four items appear in the drop-down list.
The result resembles the following image:

Adding ComboBox Items in Code

In this topic, you will learn how to add items to the C1ComboBox control in C# and Visual Basic code. This
method is useful when you’re creating a static combo box with just a few items.

Complete the following steps:

To disable AutoComplete, complete the following:

1. Open the MainPage.xaml.cs page.

2. Import the following namespace into your project:

 Visual Basic

Imports C1.WPF

 C#

Using C1.WPF;

3. Enter Code view and add the following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBox1.Items.Add(New C1ComboBoxItem() With {.Content =
"C1ComboBoxItem1"})

C1ComboBox1.Items.Add(New C1ComboBoxItem() With {.Content =
"C1ComboBoxItem2"})

C1ComboBox1.Items.Add(New C1ComboBoxItem() With {.Content =
"C1ComboBoxItem3"})

C1ComboBox1.Items.Add(New C1ComboBoxItem() With {.Content =
"C1ComboBoxItem4"})

 C#

c1ComboBox1.Items.Add(new C1ComboBoxItem() { Content =
"C1ComboBoxItem1" });

 33

c1ComboBox1.Items.Add(new C1ComboBoxItem() { Content =
"C1ComboBoxItem2" });

c1ComboBox1.Items.Add(new C1ComboBoxItem() { Content =
"C1ComboBoxItem3" });

c1ComboBox1.Items.Add(new C1ComboBoxItem() { Content =
"C1ComboBoxItem4" });

4. Run the program.

This Topic Illustrates the Following:

With the project running, click the drop-down arrow and observe that four items appear in the drop-down list. The
result resembles the following image:

Adding ComboBox Items from a Collection

In this topic, you will populate a combo box's drop-down list with a collection.

Complete the following steps:

1. Open the MainPage.xaml.cs page.

2. Import the following namespace into the project:

 Visual Basic

Imports System.Collections.Generic

 C#

using System.Collections.Generic;Create your list by adding the following code beneath
the InitializeComponent() method:

 Visual Basic

Dim dropDownList As New List(Of String)()

dropDownList.Add("C1ComboBoxItem1")

dropDownList.Add("C1ComboBoxItem2")

dropDownList.Add("C1ComboBoxItem3")

dropDownList.Add("C1ComboBoxItem4")

 C#

List<string> dropDownList = new List<string>();

dropDownList.Add("C1ComboBoxItem1");

dropDownList.Add("C1ComboBoxItem2");

dropDownList.Add("C1ComboBoxItem3");

34

dropDownList.Add("C1ComboBoxItem4");

4. Add the list to the combo box by setting the ItemsSource property:

 Visual Basic

C1ComboBox1.ItemsSource = dropDownList

 C#

c1ComboBox1.ItemsSource = dropDownList;

5. Run the program.

This Topic Illustrates the Following:

With the project running, click the drop-down arrow and observe that four items appear in the drop-down list. The
result resembles the following image:

Changing the Drop-Down List Direction
By default, the drop-down list will attempt to open at the bottom of the control; if there is no room at the bottom to
display the whole drop-down list, it will appear above the control. You can, however, specify where you would like
the drop-down list to open.

In the Designer

Complete the following steps:

1. Click the C1ComboBox control once to select it.

2. In the Properties window, click the DropDownDirection drop-down arrow and select an option. For this
example, select ForceAbove.

3. Run the program and click the drop-down arrow. Observe that the drop-down list appears above the
control.

In XAML

Complete the following steps:

1. Add DropDownDirection="ForceAbove" to the <c1:C1ComboBox> tags so that the markup
resembles the following:

<c1:C1ComboBox Width="249" DropDownDirection="ForceAbove">

2. Run the program and click the drop-down arrow. Observe that the drop-down list appears above the
control.

In Code

Complete the following steps:

 35

1. Open the MainPage.xaml.cs page.

2. Add following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBox1.DropDownDirection = ForceAbove

 C#

c1ComboBox1.DropDownDirection = ForceAbove;

3. Run the program and click the drop-down arrow. Observe that the drop-down list appears above the
control.

This Topic Illustrates the Following:

In the following image, a combo box's drop-down list is forced to open above the control.

Disabling AutoComplete
By default, a user can type in the in the combo box's selection box to locate the item they want to select; you can
disable this feature by setting the AutoComplete property to False.

In the Designer

Complete the following steps:

1. Click the C1ComboBox control once to select it.

2. In the Properties window, clear the AutoComplete check box.

In XAML

To disable AutoComplete, add AutoComplete="False" to the <c1:C1ComboBox> tag so that the markup
resembles the following:

<c1:C1ComboBox HorizontalAlignment="Left" Width="249"
AutoComplete="False">

In Code

Complete the following steps:

1. Open the MainPage.xaml.cs page.

2. Add the following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBox1.AutoComplete = False

36

 C#

c1ComboBox1.AutoComplete = false;

3. Run the program.

This Topic Illustrates the Following:

In this topic, you disabled the AutoComplete feature by setting the AutoComplete property to False. If you run the
program and try to enter text, the control will not recommend a selection.

Setting the Maximum Height and Maximum Width of the Drop-Down List
You can specify the maximum height and maximum width of a combo box's drop-down list by setting its
MaxDropDownHeight and MaxDropDownWidth properties. This topic assumes that the DropDownHeight and
DropDownWidth properties are both set to NaN. For more information, see Drop-Down List Sizing (page 25).

In the Designer

Complete the following steps:

1. Click the C1ComboBox control once to select it.

2. In the Properties window, complete the following:

 Set the MaxDropDownHeight to a value, such as "150".

 Set the MaxDropDownWidth to a value, such as "350".

3. Run the program and click the combo box's drop-down arrow to see the result of your settings.

In XAML

Complete the following steps:

1. Add MaxDropDownHeight="150" and MaxDropDownWidth="350" to the <c1:C1ComboBox>
tag so that the markup resembles the following:

<c1:C1ComboBox HorizontalAlignment="Left" Width="249"
MaxDropDownHeight="150" MaxDropDownWidth="350">

2. Run the program and click the combo box's drop-down arrow to see the result of your settings.

In Code

Complete the following steps:

1. Open the MainPage.xaml.cs page.

2. Add the following code beneath the InitializeComponent() method to set the DropDownHeight property
:

 Visual Basic

C1ComboBox1.MaxDropDownHeight = 150

 C#

c1ComboBox1.MaxDropDownHeight = 150;

3. Add the following code beneath the InitializeComponent() method to set the DropDownWidth property :

 Visual Basic

C1ComboBox1.MaxDropDownWidth = 350

 37

 C#

c1ComboBox1.MaxDropDownWidth = 350;

4. Run the program and click the combo box's drop-down arrow to see the result of your settings.

This Topic Illustrates the Following:

In this topic, you set the MaxDropDownWidth property to a value of 350 pixels and the MaxDropDownHeight
property to a value of 150 pixels. With these settings, the width of the drop-down list will never be more than 350
pixels and the height will never be more than 150 pixels; however, the height and width can be less than 150 pixels
by 350 pixels that if the items in the list aren't enough to fill that area.

Launching with the Drop-Down List Open
To launch the C1ComboBox with its drop-down list open, set the IsDropDownOpen property to True.

In the Designer

Complete the following steps:

1. Click the C1ComboBox control once to select it.

2. In the Properties window, select the IsDropDownOpen check box.

3. Run the program and observe that the drop-down list is open upon page load.

In XAML

Complete the following steps:

1. Add IsDropDownOpen="True" to the <c1:C1ComboBox> tag so that the markup resembles the
following:

<c1:C1ComboBox HorizontalAlignment="Left" Width="249"
IsDropDownOpen="True">

2. Run the program and observe that the drop-down list is open upon page load.

In Code

Complete the following steps:

1. Open the MainPage.xaml.cs page.

2. Add the following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBox1.IsDropDownOpen = True

 C#

c1ComboBox1.IsDropDownOpen = true;

3. Run the program and observe that the drop-down list is open upon page load.

This Topic Illustrates the Following:

In this topic, you set the IsDropDownOpen property to True so that the drop-down list would be open at run time.
You can also use this property to open the drop-down list when a user mouses over the C1ComboBox control (see
Opening the Drop-Down List on MouseOver (page 38)).

38

Opening the Drop-Down List on MouseOver
By default, the C1ComboBox control's drop-down list is only revealed when a user clicks the drop-down arrow. In
this topic, you will write code that will cause the drop-down list to open whenever a user hovers over the control.
This topic assumes that 1) you have already added a C1ComboBox control with at least one item to your project
and 2) you are working in Expression Blend.

Complete the following:

1. Click the C1ComboBox control to select it.

2. In the Properties window, click the Events button to reveal the control's list of events.

3. Double-click inside of the MouseEnter text box. This will add the C1ComboBox_MouseEnter event
handler to Code view.

4. Add the following code to the C1ComboBox1_MouseEnter event handler:

 Visual Basic

C1ComboBox1.IsDropDownOpen = True

 C#

c1ComboBox1.IsDropDownOpen = true;

5. Run the program.

This Topic Illustrates the Following:

With the program running, hover over the C1ComboBox control with your cursor. Observe that the drop-down list
appears when you hover over the control. The drop-down list will stay open until you either select an item or click
outside of the control.

Selecting an Item
You can select an item at run-time by setting the SelectedIndex property to the position of the item. This topic
assumes that your project contains one C1ComboBox control with at least two C1ComboBoxItem items.

In the Designer

Complete the following steps:

1. Select the C1ComboBox control.

2. In the Properties window, set the SelectedIndex property to "1" so that the second C1ComboBoxItem will
be selected.

In XAML

To set a selected item, add SelectedIndex="0" to the <c1:C1ComboBoxItem> tag so that the markup
resembles the following:

<c1:C1ComboBoxItem Content="C1ComboBoxItem1" SelectedIndex="1">

In Code

Complete the following steps:

1. Open the MainPage.xaml.cs page.

 39

2. Add the following code beneath the InitializeComponent() method:

 Visual Basic

C1ComboBoxItem1.SelectedIndex = 1

 C#

c1ComboBoxItem1.SelectedIndex = 1;

3. Run the program.

This Topic Illustrates the Following:

When the drop-down list is revealed at run time, the second item will be selected, such as in the following image.

	ComponentOne ComboBox for WPF Overview

	What’s New in ComboBox for WPF

	Installing ComboBox for WPF

	ComboBox for WPF Setup Files

	System Requirements

	Installing Demonstration Versions

	Uninstalling ComboBox for WPF

	End-User License Agreement

	Licensing FAQs

	What is Licensing?

	How does Licensing Work?

	Common Scenarios

	Troubleshooting

	Technical Support

	Redistributable Files

	About this Documentation

	XAML and XAML Namespaces

	Creating a Microsoft Blend Project

	Creating a .NET Project in Visual Studio

	Creating an XAML Browser Application (XBAP) in Visual Studio

	Adding the ComboBox for WPF Components to a Blend Project

	Adding the ComboBox for WPF Components to a Visual Studio Project

	Key Features

	ComboBox for WPF Quick Start

	Step 1 of 4: Creating an Application with a C1ComboBox Control

	Step 2 of 4: Adding Items to the First C1ComboBox Control

	Step 3 of 4: Adding Code to the Control

	Step 4 of 4: Running the Project

	Working with the C1ComboBox Control

	C1ComboBox Elements

	C1ComboBox Features

	Drop-Down List Direction

	Item Selection

	AutoComplete

	Drop-Down List Sizing

	ComboBox for WPF Layout and Appearance

	ComponentOne ClearStyle Technology

	How ClearStyle Works

	C1ComboBox and C1ComboBoxItem ClearStyle Properties

	ComboBox for WPF Appearance Properties

	Text Properties

	Content Positioning Properties

	Color Properties

	Border Properties

	Size Properties

	Templates

	Item Templates

	ComboBox for WPF Task-Based Help

	Working with ComboBox Items

	Adding ComboBox Items in the Designer

	Adding ComboBox Items in XAML

	Adding ComboBox Items in Code

	Adding ComboBox Items from a Collection

	Changing the Drop-Down List Direction

	Disabling AutoComplete

	Setting the Maximum Height and Maximum Width of the Drop-Down List

	Launching with the Drop-Down List Open

	Opening the Drop-Down List on MouseOver

	Selecting an Item

