

ComponentOne

DataGrid for WPF

Copyright  1987-2011 ComponentOne LLC. All rights reserved.

Corporate Headquarters
ComponentOne LLC
201 South Highland Avenue
3rd Floor

Pittsburgh, PA 15206 ∙ USA

Internet: info@ComponentOne.com

Web site: http://www.componentone.com

Sales

E-mail: sales@componentone.com

Telephone: 1.800.858.2739 or 1.412.681.4343 (Pittsburgh, PA USA Office)

Trademarks

The ComponentOne product name is a trademark and ComponentOne is a registered trademark of ComponentOne LLC. All
other trademarks used herein are the properties of their respective owners.

Warranty

ComponentOne warrants that the original CD (or diskettes) are free from defects in material and workmanship, assuming
normal use, for a period of 90 days from the date of purchase. If a defect occurs during this time, you may return the defective
CD (or disk) to ComponentOne, along with a dated proof of purchase, and ComponentOne will replace it at no charge. After

90 days, you can obtain a replacement for a defective CD (or disk) by sending it and a check for $25 (to cover postage and
handling) to ComponentOne.

Except for the express warranty of the original CD (or disks) set forth here, ComponentOne makes no other warranties, express
or implied. Every attempt has been made to ensure that the information contained in this manual is correct as of the time it was

written. We are not responsible for any errors or omissions. ComponentOne’s liability is limited to the amount you paid for the
product. ComponentOne is not liable for any special, consequential, or other damages for any reason.

Copying and Distribution

While you are welcome to make backup copies of the software for your own use and protection, you are not permitted to make

copies for the use of anyone else. We put a lot of time and effort into creating this product, and we appreciate your support in
seeing that it is used by licensed users only.

This manual was produced using ComponentOne Doc-To-Help™.

mailto:info@ComponentOne.com
http://www.componentone.com/

 iii

Table of Contents

ComponentOne DataGrid for WPF Overview..1

What's New in DataGrid for WPF .. 1

Installing DataGrid for WPF ... 1

Grid for WPF Setup Files ... 1

System Requirements ... 2

Installing Demonstration Versions ... 3

Uninstalling DataGrid for WPF ... 3

End-User License Agreement .. 3

Licensing FAQs ... 3

What is Licensing?.. 3

How does Licensing Work?.. 4

Common Scenarios .. 4

Troubleshooting.. 6

Technical Support .. 8

Redistributable Files ... 9

About this Documentation... 9

XAML and XAML Namespaces ... 9

Creating a Microsoft Blend Project .. 10

Creating a .NET Project in Visual Studio .. 11

Creating an XAML Browser Application (XBAP) in Visual Studio ... 12

Adding the DataGrid for WPF Components to a Blend Project ... 13

Adding the DataGrid for WPF Components to a Visual Studio Project ... 13

Key Features .. 14

DataGrid for WPF Quick Start .. 17

Step 1 of 3: Adding Grid for WPF to your Project .. 17

Step 2 of 3: Binding the Grid to a Data Source .. 18

Step 3 of 3: Running the Grid Application .. 21

Working with DataGrid for WPF .. 23

Class Hierarchy .. 23

Data Binding .. 23

iv

Defining Columns .. 24

Generating Columns .. 24

Column Types .. 24

Explicitly Defining Columns .. 25

Customizing Automatically Generated Columns .. 27

Creating Custom Columns ... 29

Customizing Column Cell Content .. 29

Adding Properties to a Custom Column .. 31

Creating Custom Rows .. 32

Customizing Row Cell Content ... 32

Adding a Custom Row to the Data Grid ... 35

Adding Row Details ... 37

Localizing the Application ... 37

Adding Resource Files.. 37

Adding Supported Cultures .. 39

Setting the Current Culture .. 39

Enabling or Disabling End User Interaction .. 40

Setting Selection Mode .. 40

Locking the Grid .. 41

Deferred and Real Time Scrolling.. 41

DataGrid for WPF's Appearance ... 42

C1DataGrid Themes .. 42

Editing Templates and Styles ... 44

Table Formatting Options .. 46

Setting Row and Column Header Visibility ... 46

Setting Grid Line Visibility ... 46

Setting New Row Visibility .. 46

Setting Vertical and Horizontal Scrollbar Visibility ... 46

Setting Row Details Visibility... 47

C1DataGrid Brushes .. 47

C1DataGrid ClearStyle .. 48

C1DataGrid Template Parts .. 50

RowDetailsTemplate ... 51

Run-time Interaction .. 51

Keyboard and Mouse Navigation .. 52

Keyboard Navigation ... 52

 v

Mouse Navigation .. 53

Multiple Row Selection .. 54

Custom Keyboard Navigation .. 54

Resizing Columns and Rows ... 55

Reordering Columns .. 56

Filtering Columns .. 56

Sorting Columns .. 58

Grouping Columns .. 59

Freezing Columns .. 61

Editing Cells ... 62

Adding Rows to the Grid ... 63

DataGrid for WPF Task-Based Help.. 65

Creating a DataGrid... 65

Controlling Grid Interaction .. 67

Enabling Grouping in the Grid .. 67

Showing the Grouping Area... 68

Disabling Column Reordering ... 68

Disabling Column and Row Resizing .. 69

Disabling Column Filtering .. 69

Disabling Column Sorting .. 70

Enabling Column Freezing .. 71

Freezing Grid Rows ... 71

Disabling Cell Editing .. 72

Disabling Adding Rows.. 72

Disabling Row Details Toggling .. 73

Customizing Grid Appearance .. 74

Changing the Grid's Background and Foreground Color .. 74

Removing the Grid's Alternating Row Colors ... 75

Changing the Grid's Mouse Hover Style .. 76

Changing the Grid's Font Style .. 77

 1

ComponentOne DataGrid for WPF

Overview
Add advanced data visualization to your WPF applications with

ComponentOne DataGrid™ for WPF. The robust data-bound

C1DataGrid control makes it easy to display, edit, and analyze tabular
data in WPF applications.

 Getting Started

Get started with the
following topics:

- Key Features (page 14)

- Quick Start (page 17)

- Task-Basked Help (page
65)

What's New in DataGrid for WPF
This documentation was last revised for the 2010 v3 release. The following changes and enhancements were made
in this release:

 Printing Support

You can now print your grids. In the 2010 v3 release, printing support was added to DataGrid for WPF.
See the Print methods for more information about printing grids.

 Excel Export Support

You can export to Microsoft Excel files. In the 2010 v3 release an export to Excel file format feature was

added to DataGrid for WPF. See the Save methods for more information.

 Tip: A version history containing a list of new features, improvements, fixes, and changes for each product
is available on HelpCentral at http://helpcentral.componentone.com/VersionHistory.aspx.

Installing DataGrid for WPF
The following sections provide helpful information on installing ComponentOne DataGrid for WPF.

Grid for WPF Setup Files

The installation program will create the directory C:\Program Files\ComponentOne\Studio for WPF, which

contains the following subdirectories:

Bin Contains copies of all ComponentOne binaries (DLLs, EXEs).

For Component DataGrid for WPF, the following DLLs are
installed:

 C1.WPF.dll

 C1.WPF.Expression.Design.dll

 C1.WPF.VisualStudio.Design.dll

 C1.WPF.Expression.Design.4.dll

http://helpcentral.componentone.com/VersionHistory.aspx

2

 C1.WPF.VisualStudio.Design.4.dll

 C1.WPF.DataGrid

In addition, the following files from the Microsoft WPF Toolkit
are also installed:

 WPFToolkit.dll

 WPFToolkit.Design.dll

 WPFToolkit.VisualStudio.Design.dll

For more information about the Microsoft WPF Toolkit, see
CodePlex. The C1.WPF.dll and WPFToolkit.dll assemblies are
required for deployment.

H2Help Contains Microsoft Help 2.0 integrated documentation for all
Studio components.

HelpViewer Contains Microsoft Help Viewer Visual Studio 2010 integrated
documentation for all Studio components.

C1WPFDataGrid\XAML Contains the full XAML definitions of C1DataGrid styles and
templates which can be used for creating your own custom
styles and templates.

Samples

Samples for the product are installed in the ComponentOne Samples folder by default. The path of the

ComponentOne Samples directory is slightly different on Windows XP and Windows 7/Vista machines:

Windows XP path: C:\Documents and Settings\<username>\My Documents\ComponentOne Samples

Windows 7/Vista path: C:\Users\<username>\Documents\ComponentOne Samples

The ComponentOne Samples folder contains the following subdirectories:

Common Contains support and data files that are used by many of the demo
programs.

Studio for WPF Contains samples for DataGrid for WPF.

Samples can be accessed from the ComponentOne Studio for WPF ControlExplorer. To view samples, on your

desktop, click the Start button and then click All Programs | ComponentOne | Studio for WPF | Samples |

WPF ControlExplorer.

System Requirements

System requirements include the following:

Operating Systems: Microsoft Windows® XP with Service Pack 2 (SP2)

Windows Vista™

Windows 7

Windows 2008 Server

Environments: .NET Framework 3.5 or later

http://wpf.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=25047

 3

Visual Studio® 2005 extensions for .NET Framework 2.0
November 2006 CTP

Visual Studio® 2008 or later

Microsoft® Expression®
Blend Compatibility:

DataGrid for WPF includes design-time support for Expression
Blend.

Note: The C1.WPF. VisualStudio.Design.dll assembly is required by Visual Studio 2008 and the C1.WPF.

Expression.Design.dll assembly is required by Expression Blend. The C1.WPF.Expression.Design.dll and

C1.WPF. VisualStudio.Design.dll assemblies installed with DataGrid for WPF should always be placed in the
same folder as C1.WPF.dll; the DLLs should NOT be placed in the Global Assembly Cache (GAC).

Installing Demonstration Versions

If you wish to try ComponentOne DataGrid for WPF and do not have a serial number, follow the steps through
the installation wizard and use the default serial number.

The only difference between unregistered (demonstration) and registered (purchased) versions of our products is
that registered versions will stamp every application you compile so that a ComponentOne banner will not appear
when your users run the applications.

Uninstalling DataGrid for WPF

To uninstall ComponentOne Studio for WPF:

1. Open the Control Panel and select Add or Remove Programs (Programs and Features in Windows
7/Vista).

2. Select ComponentOne Studio for WPF and click the Remove button.

3. Click Yes to remove the program.

To uninstall ComponentOne Studio for WPF integrated help:

1. Open the Control Panel and select Add or Remove Programs (Programs and Features in Windows
7/Vista).

2. Select ComponentOne Studio for WPF Help and click the Remove button.

3. Click Yes to remove the integrated help.

End-User License Agreement
All of the ComponentOne licensing information, including the ComponentOne end-user license agreements,
frequently asked licensing questions, and the ComponentOne licensing model, is available online at
http://www.componentone.com/SuperPages/Licensing/.

Licensing FAQs
This section describes the main technical aspects of licensing. It may help the user to understand and resolve
licensing problems he may experience when using ComponentOne .NET and ASP.NET products.

What is Licensing?

Licensing is a mechanism used to protect intellectual property by ensuring that users are authorized to use software
products.

Licensing is not only used to prevent illegal distribution of software products. Many software vendors, including
ComponentOne, use licensing to allow potential users to test products before they decide to purchase them.

http://www.componentone.com/SuperPages/Licensing/

4

Without licensing, this type of distribution would not be practical for the vendor or convenient for the user.
Vendors would either have to distribute evaluation software with limited functionality, or shift the burden of
managing software licenses to customers, who could easily forget that the software being used is an evaluation
version and has not been purchased.

How does Licensing Work?

ComponentOne uses a licensing model based on the standard set by Microsoft, which works with all types of
components.

Note: The Compact Framework components use a slightly different mechanism for run-time licensing than the

other ComponentOne components due to platform differences.

When a user decides to purchase a product, he receives an installation program and a Serial Number. During the
installation process, the user is prompted for the serial number that is saved on the system. (Users can also enter

the serial number by clicking the License button on the About Box of any ComponentOne product, if available, or
by rerunning the installation and entering the serial number in the licensing dialog box.)

When a licensed component is added to a form or Web page, Visual Studio obtains version and licensing
information from the newly created component. When queried by Visual Studio, the component looks for
licensing information stored in the system and generates a run-time license and version information, which Visual
Studio saves in the following two files:

 An assembly resource file which contains the actual run-time license.

 A "licenses.licx" file that contains the licensed component strong name and version information.

These files are automatically added to the project.

In WinForms and ASP.NET 1.x applications, the run-time license is stored as an embedded resource in the
assembly hosting the component or control by Visual Studio. In ASP.NET 2.x applications, the run-time license

may also be stored as an embedded resource in the App_Licenses.dll assembly, which is used to store all run-time

licenses for all components directly hosted by WebForms in the application. Thus, the App_licenses.dll must
always be deployed with the application.

The licenses.licx file is a simple text file that contains strong names and version information for each of the
licensed components used in the application. Whenever Visual Studio is called upon to rebuild the application

resources, this file is read and used as a list of components to query for run-time licenses to be embedded in the
appropriate assembly resource. Note that editing or adding an appropriate line to this file can force Visual Studio
to add run-time licenses of other controls as well.

Note that the licenses.licx file is usually not shown in the Solution Explorer; it appears if you press the Show All

Files button in the Solution Explorer's Toolbox or, from Visual Studio's main menu, select Show All Files on the

Project menu.

Later, when the component is created at run time, it obtains the run-time license from the appropriate assembly
resource that was created at design time and can decide whether to simply accept the run-time license, to throw an
exception and fail altogether, or to display some information reminding the user that the software has not been
licensed.

All ComponentOne products are designed to display licensing information if the product is not licensed. None will
throw licensing exceptions and prevent applications from running.

Common Scenarios

The following topics describe some of the licensing scenarios you may encounter.

Creating components at design time

This is the most common scenario and also the simplest: the user adds one or more controls to the form, the

licensing information is stored in the licenses.licx file, and the component works.

 5

Note that the mechanism is exactly the same for Windows Forms and Web Forms (ASP.NET) projects.

Creating components at run time

This is also a fairly common scenario. You do not need an instance of the component on the form, but would like

to create one or more instances at run time.

In this case, the project will not contain a licenses.licx file (or the file will not contain an appropriate run-time
license for the component) and therefore licensing will fail.

To fix this problem, add an instance of the component to a form in the project. This will create the licenses.licx file

and things will then work as expected. (The component can be removed from the form after the licenses.licx file

has been created).

Adding an instance of the component to a form, then removing that component, is just a simple way of adding a

line with the component strong name to the licenses.licx file. If desired, you can do this manually using notepad
or Visual Studio itself by opening the file and adding the text. When Visual Studio recreates the application
resources, the component will be queried and its run-time license added to the appropriate assembly resource.

Inheriting from licensed components

If a component that inherits from a licensed component is created, the licensing information to be stored in the
form is still needed. This can be done in two ways:

 Add a LicenseProvider attribute to the component.

This will mark the derived component class as licensed. When the component is added to a form, Visual

Studio will create and manage the licenses.licx file and the base class will handle the licensing process as

usual. No additional work is needed. For example:
 [LicenseProvider(typeof(LicenseProvider))]

 class MyGrid: C1.Win.C1FlexGrid.C1FlexGrid

 {

 // ...

 }

 Add an instance of the base component to the form.

This will embed the licensing information into the licenses.licx file as in the previous scenario and the

base component will find it and use it. As before, the extra instance can be deleted after the licenses.licx

file has been created.

Please note that ComponentOne licensing will not accept a run-time license for a derived control if the run-time
license is embedded in the same assembly as the derived class definition and the assembly is a DLL. This
restriction is necessary to prevent a derived control class assembly from being used in other applications without a
design-time license. If you create such an assembly, you will need to take one of the actions previously described
create a component at run time.

Using licensed components in console applications

When building console applications, there are no forms to add components to and therefore Visual Studio won't

create a licenses.licx file.

In these cases, create a temporary Windows Forms application and add all the desired licensed components to a

form. Then close the Windows Forms application and copy the licenses.licx file into the console application
project.

Make sure the licenses.licx file is configured as an embedded resource. To do this, right-click the licenses.licx file

in the Solution Explorer window and select Properties. In the Properties window, set the Build Action property to

Embedded Resource.

6

Using licensed components in Visual C++ applications

There is an issue in VC++ 2003 where the licenses.licx is ignored during the build process; therefore, the licensing

information is not included in VC++ applications.

To fix this problem, extra steps must be taken to compile the licensing resources and link them to the project. Note
the following:

1. Build the C++ project as usual. This should create an EXE file and also a licenses.licx file with licensing
information in it.

2. Copy the licenses.licx file from the application directory to the target folder (Debug or Release).

3. Copy the C1Lc.exe utility and the licensed DLLs to the target folder. (Don't use the standard lc.exe, it has

bugs.)

4. Use C1Lc.exe to compile the licenses.licx file. The command line should look like this:
c1lc /target:MyApp.exe /complist:licenses.licx /i:C1.Win.C1FlexGrid.dll

5. Link the licenses into the project. To do this, go back to Visual Studio, right-click the project, select

Properties, and go to the Linker/Command Line option. Enter the following:
/ASSEMBLYRESOURCE:Debug\MyApp.exe.licenses

6. Rebuild the executable to include the licensing information in the application.

Using licensed components with automated testing products

Automated testing products that load assemblies dynamically may cause them to display license dialog boxes. This
is the expected behavior since the test application typically does not contain the necessary licensing information
and there is no easy way to add it.

This can be avoided by adding the string "C1CheckForDesignLicenseAtRuntime" to the AssemblyConfiguration

attribute of the assembly that contains or derives from ComponentOne controls. This attribute value directs the
ComponentOne controls to use design-time licenses at run time.

For example:
#if AUTOMATED_TESTING

 [AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime")]

#endif

 public class MyDerivedControl : C1LicensedControl

 {

 // ...

 }

Note that the AssemblyConfiguration string may contain additional text before or after the given string, so the

AssemblyConfiguration attribute can be used for other purposes as well. For example:
[AssemblyConfiguration("C1CheckForDesignLicenseAtRuntime,BetaVersion")]

THIS METHOD SHOULD ONLY BE USED UNDER THE SCENARIO DESCRIBED. It requires a design-
time license to be installed on the testing machine. Distributing or installing the license on other computers is a
violation of the EULA.

Troubleshooting

We try very hard to make the licensing mechanism as unobtrusive as possible, but problems may occur for a
number of reasons.

Below is a description of the most common problems and their solutions.

 7

I have a licensed version of a ComponentOne product but I still get the splash screen when I run my
project.

If this happens, there may be a problem with the licenses.licx file in the project. It either doesn't exist, contains
wrong information, or is not configured correctly.

First, try a full rebuild (Rebuild All from the Visual Studio Build menu). This will usually rebuild the correct
licensing resources.

If that fails follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and open it. If prompted, continue to open the file.

4. Change the version number of each component to the appropriate value. If the component does not

appear in the file, obtain the appropriate data from another licenses.licx file or follow the alternate

procedure following.

5. Save the file, then close the licenses.licx tab.

6. Rebuild the project using the Rebuild All option (not just Rebuild).

Alternatively, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Click the Show All Files button on the top of the window.

3. Find the licenses.licx file and delete it.

4. Close the project and reopen it.

5. Open the main form and add an instance of each licensed control.

6. Check the Solution Explorer window, there should be a licenses.licx file there.

7. Rebuild the project using the Rebuild All option (not just Rebuild).

For ASP.NET 2.x applications, follow these steps:

1. Open the project and go to the Solution Explorer window.

2. Find the licenses.licx file and right-click it.

3. Select the Rebuild Licenses option (this will rebuild the App_Licenses.licx file).

4. Rebuild the project using the Rebuild All option (not just Rebuild).

I have a licensed version of a ComponentOne product on my Web server but the components still
behave as unlicensed.

There is no need to install any licenses on machines used as servers and not used for development.

The components must be licensed on the development machine, therefore the licensing information will be saved
into the executable (.exe or .dll) when the project is built. After that, the application can be deployed on any
machine, including Web servers.

For ASP.NET 2.x applications, be sure that the App_Licenses.dll assembly created during development of the
application is deployed to the bin application bin directory on the Web server.

If your ASP.NET application uses WinForms user controls with constituent licensed controls, the runtime license
is embedded in the WinForms user control assembly. In this case, you must be sure to rebuild and update the user
control whenever the licensed embedded controls are updated.

8

I downloaded a new build of a component that I have purchased, and now I'm getting the splash screen
when I build my projects.

Make sure that the serial number is still valid. If you licensed the component over a year ago, your subscription
may have expired. In this case, you have two options:

Option 1 – Renew your subscription to get a new serial number.

If you choose this option, you will receive a new serial number that you can use to license the new components

(from the installation utility or directly from the About Box).

The new subscription will entitle you to a full year of upgrades and to download the latest maintenance builds
directly from http://prerelease.componentone.com/.

Option 2 – Continue to use the components you have.

Subscriptions expire, products do not. You can continue to use the components you received or downloaded while
your subscription was valid.

Technical Support
ComponentOne offers various support options. For a complete list and a description of each, visit the
ComponentOne Web site at http://www.componentone.com/Support.

Some methods for obtaining technical support include:

 Online Support via HelpCentral
ComponentOne HelpCentral provides customers with a comprehensive set of technical resources in the

form of FAQs, samples, Version Release History, Articles, searchable Knowledge Base, searchable Online
Help and more. We recommend this as the first place to look for answers to your technical questions.

 Online Support via our Incident Submission Form
This online support service provides you with direct access to our Technical Support staff via an online
incident submission form. When you submit an incident, you'll immediately receive a response via e-mail
confirming that you've successfully created an incident. This email will provide you with an Issue
Reference ID and will provide you with a set of possible answers to your question from our
Knowledgebase. You will receive a response from one of the ComponentOne staff members via e-mail in

2 business days or less.

 Peer-to-Peer Product Forums and Newsgroups
ComponentOne peer-to-peer product forums and newsgroups are available to exchange information, tips,
and techniques regarding ComponentOne products. ComponentOne sponsors these areas as a forum for
users to share information. While ComponentOne does not provide direct support in the forums and
newsgroups, we periodically monitor them to ensure accuracy of information and provide comments
when appropriate. Please note that a ComponentOne User Account is required to participate in the
ComponentOne Product Forums.

 Installation Issues
Registered users can obtain help with problems installing ComponentOne products. Contact technical
support by using the online incident submission form or by phone (412.681.4738). Please note that this
does not include issues related to distributing a product to end users in an application.

 Documentation
Microsoft integrated ComponentOne documentation can be installed with each of our products, and

documentation is also available online at HelpCentral. If you have suggestions on how we can improve
our documentation, please email the Documentation team. Please note that e-mail sent to the
Documentation team is for documentation feedback only. Technical Support and Sales issues should be
sent directly to their respective departments.

http://prerelease.componentone.com/
http://www.componentone.com/Support
http://helpcentral.componentone.com/
http://helpcentral.componentone.com/ProductResources.aspx?View=FAQs
http://helpcentral.componentone.com/ProductResources.aspx?View=SAMPLES
http://helpcentral.componentone.com/ProductResources.aspx?View=VersionHistory
http://helpcentral.componentone.com/Articles.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Search.aspx
http://helpcentral.componentone.com/Forums.aspx
http://helpcentral.componentone.com/Documentation.aspx
mailto:documentation@componentone.com
mailto:documentation@componentone.com
http://www.componentone.com/SuperProducts/SupportServices/
mailto:sales@componentone.com

 9

Note: You must create a ComponentOne Account and register your product with a valid serial number to obtain
support using some of the above methods.

Redistributable Files
ComponentOne DataGrid for WPF is developed and published by ComponentOne LLC. You may use it to
develop applications in conjunction with Microsoft Visual Studio or any other programming environment that
enables the user to use and integrate the control(s). You may also distribute, free of royalties, the following
Redistributable Files with any such application you develop to the extent that they are used separately on a single
CPU on the client/workstation side of the network:

 C1.WPF.dll

 C1.WPF.DataGrid.dll

In addition, the following file from the Microsoft WPF Toolkit is also installed and is redistributable:

 WPFToolkit.dll

Site licenses are available for groups of multiple developers. Please contact Sales@ComponentOne.com for details.

About this Documentation
You can create your applications using Microsoft Expression Blend or Visual Studio, but Blend is currently the
only design-time environment that allows users to design XAML documents visually. In this documentation, we

will use the Design workspace of Blend for most examples.

Acknowledgements

Microsoft, Windows, Windows Vista, Visual Studio, and Microsoft Expression are either registered trademarks or trademarks of

Microsoft Corporation in the United States and/or other countries.

ComponentOne

If you have any suggestions or ideas for new features or controls, please call us or write:

Corporate Headquarters

ComponentOne LLC

201 South Highland Avenue

3rd Floor

Pittsburgh, PA 15206 • USA

412.681.4343

412.681.4384 (Fax)

http://www.componentone.com/

ComponentOne Doc-To-Help

This documentation was produced using ComponentOne Doc-To-Help® Enterprise.

XAML and XAML Namespaces
XAML is a declarative XML-based language that is used as a user interface markup language in Windows
Presentation Foundation (WPF) and the .NET Framework 3.0 or later. With XAML you can create a graphically
rich customized user interface, perform data binding, and much more. For more information on XAML, please see

http://www.microsoft.com.

XAML Namespaces

mailto:sales@componentone.com
http://www.componentone.com/
http://www.doctohelp.com/
http://www.microsoft.com/

10

Namespaces organize the objects defined in an assembly. Assemblies can contain multiple namespaces, which can
in turn contain other namespaces. Namespaces prevent ambiguity and simplify references when using large groups
of objects such as class libraries.

When you create a Microsoft Expression Blend project, a XAML file is created for you and some initial
namespaces are specified:

Namespace Description

xmlns="http://schemas.microsoft.com/win

fx/2006/xaml/presentation"

This is the default Windows Presentation Foundation

namespace.

xmlns:x="http://schemas.microsoft.com/

winfx/2006/xaml"

This is a XAML namespace that is mapped to the x: prefix.

The x: prefix provides a quick, easy way to reference the
namespace, which defines many commonly-used features

necessary for WPF applications.

When you add a C1DataGrid control to the window in Microsoft Expression Blend or Visual Studio, Blend or

Visual Studio automatically creates an XML namespace for the control. The namespace looks like the following in
Microsoft Expression Blend:

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

The namespace value is datagrid and the XML namespace is

http://schemas.componentone.com/winfx/2006/xaml. This is a unified namespace; once this is in the project,
all ComponentOne WPF controls found in your references will be accessible through XAML (and IntelliSense).
Note that you still need to add references to the assemblies for each control you need to use.

You can also choose to create your own custom name for the namespace. For example:
xmlns:MyGrid="http://schemas.componentone.com/winfx/2006/xaml"

You can now use your custom namespace when assigning properties, methods, and events. For example, use the
following XAML to add a border around the grid:

<MyGrid:C1DataGrid Name="C1DataGrid1" BorderThickness="10,10,10,10">

Creating a Microsoft Blend Project
To create a new Blend project, complete the following steps:

1. From the File menu, select New Project or click New Project in the Blend startup window.

The Create New Project dialog box opens.

2. Make sure WPF Application (.exe) is selected and enter a name for the project in the Name text box. The

WPF Application (.exe) creates a project for a Windows-based application that can be built and run while
being designed.

3. Select the Browse button to specify a location for the project.

4. Select a language from the Language drop-down box and click OK.

 11

A new Blend project with a XAML window is created.

Creating a .NET Project in Visual Studio
To create a new .NET project in Visual Studio 2008, complete the following steps:

1. From the File menu in Microsoft Visual Studio 2008, select New Project.

The New Project dialog box opens.

2. Choose the appropriate .NET Framework from the Framework drop-down box in the top-right of the
dialog box.

3. Under Project types, select either Visual Basic or Visual C#.

Note: In Visual Studio 2005 select NET Framework 3.0 under Visual Basic or Visual C# in the Project

types menu.

4. Choose WPF Application from the list of Templates in the right pane.

12

5. Enter a name for your application in the Name field and click OK.

A new Microsoft Visual Studio .NET WPF project is created with a XAML file that will be used to define
your user interface and commands in the application.

Note: You can create your grid applications using Microsoft Expression Blend or Visual Studio, but Blend is

currently the only design-time environment that allows users to design XAML documents visually. In this

documentation, Blend will be used for most examples.

Creating an XAML Browser Application (XBAP) in Visual Studio
To create a new XAML Browser Application (XBAP) in Visual Studio 2008, complete the following steps:

1. From the File menu in Microsoft Visual Studio 2008, select New Project. The New Project dialog box
opens.

2. Choose the appropriate .NET Framework from the Framework drop-down box in the top-right of the
dialog box.

 13

3. Under Project types, select either Visual Basic or Visual C#.

4. Choose WPF Browser Application from the list of Templates in the right pane.

Note: If using Visual Studio 2005, you may need to select XAML Browser Application (WPF) after
selecting NET Framework 3.0 under Visual Basic or Visual C# in the left-side menu.

5. Enter a name for your application in the Name field and click OK.

A new Microsoft Visual Studio .NET WPF Browser Application project is created with a XAML file that
will be used to define your user interface and commands in the application.

Adding the DataGrid for WPF Components to a Blend Project
In order to use C1DataGrid or another ComponentOne DataGrid for WPF component in the Design workspace

of Blend, you must first add references to the C1.WPF.dll, C1.WPF.DataGrid, and WPFToolkit.dll assemblies

and then add the component from Blend's Asset Library.

To add a reference to the assembly:

1. Select Project | Add Reference.

1. Browse to find the C1.WPF.DataGrid.dll assembly installed with DataGrid for WPF.

Note: The C1.WPF.C1DataGrid.dll file is installed to C:\Program Files\ComponentOne\Studio for

WPF\Bin by default.

2. Select C1.WPF.DataGrid.dll and click Open. A reference is added to your project.

To add a component from the Asset Library:

1. Once you have added a reference to the C1.WPF.DataGrid assembly, click the Asset Library button

 in the Blend Toolbox. The Asset Library appears.

2. Click the Controls drop-down arrow and select All.

3. Select C1DataGrid. The component will appear in the Toolbox below the Asset Library button.

4. Double-click the C1DataGrid component in the Toolbox to add it to Window1.xaml.

Adding the DataGrid for WPF Components to a Visual Studio Project
When you install ComponentOne DataGrid for WPF the C1DataGrid control should be added to your Visual
Studio Toolbox. You can also manually add ComponentOne controls to the Toolbox.

ComponentOne DataGrid for WPF provides the following control:

 C1DataGrid

14

To use a DataGrid for WPF panel or control, add it to the window or add a reference to the C1.WPF.DataGrid
assembly to your project.

Manually Adding DataGrid for WPF to the Toolbox

When you install DataGrid for WPF, the following DataGrid for WPF control will appear in the Visual Studio
Toolbox customization dialog box:

 C1DataGrid

To manually add the C1DataGrid control to the Visual Studio Toolbox, complete the following steps:

1. Open the Visual Studio IDE (Microsoft Development Environment). Make sure the Toolbox is visible

(select Toolbox in the View menu, if necessary) and right-click the Toolbox to open its context menu.

2. To make DataGrid for WPF components appear on its own tab in the Toolbox, select Add Tab from the

context menu and type in the tab name, C1WPFGrid, for example.

3. Right-click the tab where the component is to appear and select Choose Items from the context menu.

The Choose Toolbox Items dialog box opens.

4. In the dialog box, select the WPF Components tab.

5. Sort the list by Namespace (click the Namespace column header) and select the check boxes for components

belonging to the C1.WPF.DataGrid namespace. Note that there may be more than one component for

each namespace.

Adding DataGrid for WPF to the Window

To add ComponentOne DataGrid for WPF to a window or page, complete the following steps:

1. Add the C1DataGrid control to the Visual Studio Toolbox.

2. Double-click C1DataGrid or drag the control onto the window.

Adding a Reference to the Assembly

To add a reference to the DataGrid for WPF assembly, complete the following steps:

1. Select the Add Reference option from the Project menu of your project.

2. Select the ComponentOne DataGrid for WPF assembly from the list on the .NET tab or on the Browse

tab, browse to find the C1.WPF.DataGrid.dll assembly and click OK.

3. Double-click the window caption area to open the code window. At the top of the file, add the following

Imports statements (using in C#):
Imports C1.WPF.DataGrid

This makes the objects defined in the DataGrid for WPF assembly visible to the project.

Key Features
ComponentOne DataGrid for WPF includes several key features, such as:

 Fully Interactive Grid

Enhance the end-user experience by creating a fully interactive grid. DataGrid for WPF has many built-in
interactive features such as column resizing and reordering, editing, sorting, filtering, grouping, freezing,
and selecting. See Run-time Interaction (page 51) for more information.

 Data Grouping and Totals

DataGrid for WPF supports Outlook-style grouping. Simply drag a column header to the area above the
grid to group the data. Expandable and collapsible nodes are automatically generated. You can also show

 15

calculated aggregate functions or totals in grouped header rows. See Grouping Columns (page 59) for
details.

 Excel-like Filtering

By default, DataGrid for WPF supports Excel-like filtering. This type of filtering features a drop-down
menu on each column allowing users to create a filter condition. See Filtering Columns (page 56) for more
information.

 High Performance

DataGrid for Silverlight utilizes both row and column recycling (UI Virtualization) to achieve optimal

performance when handling large data sets.

 Several Built-in Column Types

DataGrid for WPF provides many built-in column editors that cover all of the common data types. The
built-in editors include text, check box, DateTime picker, combo box and images. You can also choose
from a selection of custom column editors including masked text, hyperlink, multi-line text and a color
picker. See Column Types (page 24) for details.

 RowDetails and Hierarchical Support

DataGrid also supports a RowDetails template for embedding UIElements inside a collapsible section of
each row. For example, just embed another DataGrid and you can create a master-detail grid for
displaying hierarchical data. For more information, see Adding Row Details (page 37).

 Top and Bottom Row Templates

With DataGrid for WPF's Top and Bottom row templates you can easily create and add custom rows to

the grid. For example, you can design your own filter or total rows and embed any UIElements inside.

 Multiple Selection Modes

Give end-users all of the following cell selection options: single cell, single row, single column, single

range, multi-row, multi-column, and multi-range. With DataGrid for WPF's clipboard support, end-users
can then easily paste selected cells into any text editor, such as Microsoft Excel.

 New Row

Allow users to add new rows to DataGrid for WPF by displaying an empty new row at either the top or
bottom of the grid. See Adding Rows to the Grid (page 63) and Setting New Row Visibility (page 46) for
details.

 Custom Rows and Columns

Design your own data template for each DataGrid row and create composite columns which can combine
data from multiple data fields.

 Easily Change Colors with ClearStyle

DataGrid for WPF supports ComponentOne's new ClearStyle™ technology that allows you to easily
change control colors without having to change control templates. With just setting a few color properties
you can quickly style the entire grid. For details, see C1DataGrid ClearStyle (page 48).

 17

DataGrid for WPF Quick Start
The following quick start guide is intended to get you up and running with DataGrid for WPF. In this quick start

you'll start in Visual Studio and create a new project, add DataGrid for WPF to your application, and add a data
source. You'll then move to Microsoft Expression Blend to complete binding the grid to the data source, customize
the grid, and run the grid application to observe run-time interactions.

Note: This quick start guide uses the C1NWind.mdb database, installed by default in the ComponentOne
Samples\Common folder installed in your MyDocuments folder (Documents in 7/Vista). You could also use

the standard Microsoft Northwind database instead, NWind.mdb, and adapt the appropriate steps.

Step 1 of 3: Adding Grid for WPF to your Project
In this step you'll begin in Visual Studio to create a grid application using DataGrid for WPF. When you add the

C1DataGrid control to your application, you'll have a complete, functional grid. You can further customize the
grid to your application.

To set up your project and add a C1DataGrid control to your application, complete the following steps:

1. Create a new WPF project in Visual Studio. For more information about creating a WPF project, see
Creating a .NET Project in Visual Studio (page 11).

2. Navigate to the Toolbox and double-click the C1DataGrid icon to add the grid control to Window1.

3. Resize the Window and the C1DataGrid within the Window; it should now look similar to the following:

What You've Accomplished

Run the application and observe that the grid application will appear similar to the following image:

18

You've successfully created a very basic grid application, but the grid is blank. In the next step you'll add a data
source to your project and bind the grid to the data source.

Step 2 of 3: Binding the Grid to a Data Source
In the last step you set up the grid application – but while the basic grid is functional, it contains no data. In this
step you'll continue in Visual Studio by adding a data source to your project. You'll then open the project in

Microsoft Expression Blend to complete binding the grid to the data source.

To add a data source and set up data binding in Visual Studio, complete the following steps:

1. From the Data menu, select Add New Data Source. The Data Source Configuration Wizard appears.

2. Confirm that Database is selected in the Data Source Configuration Wizard and click Next.

3. If the Choose a Database Model screen appears, select Dataset and click Next.

4. On the Choose Your Data Connection screen, click the New Connection button to locate and connect to
a database.

If the Choose Data Source dialog box appears, select Microsoft Access Database File and click

Continue. The Add Connection dialog box will appear.

5. In the Add Connection dialog box, click the Browse button and locate C1NWind.mdb in the samples

installation directory. Select it and click Open.

6. Click the Test Connection button to make sure that you have successfully connected to the database or

server and click OK.

7. Click OK to close the Add Connection dialog box. The new string appears in the data connection drop-

down list on the Choose Your Data Connection page.

8. Click the Next button to continue. If a dialog box appears asking if you would like to add the data file to

your project and modify the connection string, click No since it is not necessary to copy the database to
your project.

9. In the next window, confirm that the Yes, save the connection as check box is selected and a name has

been automatically entered in the text box ("C1NWindConnectionString"). Click Next to continue.

10. In the Choose Your Database Objects window, you can select the tables and fields that you would like in

your dataset. Select the Products table (you may need to expand the Tables node first) and change the

DataSet name to ProductsDS.

 19

11. Click Finish to exit the wizard. The ProductsDS.xsd files now appear in the Solution Explorer.

12. In the Solution Explorer, double-click the Window1.xaml.cs (or Window1.xaml.vb) file to switch to code

view.

13. Add the following references to the top of the Window1.xaml.cs (or Window1.xaml.vb) file, replacing
ProjectName with the name of your project:

 Visual Basic
Imports C1.WPF.DataGrid

Imports ProjectName.ProductsDSTableAdapters

 C#
using C1.WPF.DataGrid;

using ProjectName.ProductsDSTableAdapters;

14. Add the following code to the MainWindow class to retrieve the products and order details data from the

database:

 Visual Basic
Class MainWindow

 Inherits Window

 Private _productsDataSet As ProductsDS = Nothing

 Public ReadOnly Property ProductsDataSet() As ProductsDS

 Get

 If _productsDataSet Is Nothing Then

 _productsDataSet = New ProductsDS()

 Dim prodTA As New ProductsTableAdapter()

 prodTA.Fill(_productsDataSet.Products)

 End If

 Return _productsDataSet

 End Get

 End Property

 Public Sub New()

 InitializeComponent()

 End Sub

End Class

 C#
public partial class MainWindow : Window

{

 private ProductsDS _productsDataSet = null;

 public ProductsDS ProductsDataSet

 {

 get

 {

 if (_productsDataSet == null)

 {

 _productsDataSet = new ProductsDS();

 ProductsTableAdapter prodTA = new

ProductsTableAdapter();

 prodTA.Fill(_productsDataSet.Products);

 }

 return _productsDataSet;

 }

 }

 public MainWindow()

 {

20

 InitializeComponent();

 }

}

15. Press F5 to run your project to ensure that everything is working correctly. Notice that the grid still
appears blank in the running application; you will need to complete binding before content appears.

16. Close the running application and return to the project.

17. Add code to the MainWindow constructor so that it looks like the following:

 Visual Basic
Public Sub New()

 InitializeComponent()

 Me.C1DataGrid1.ItemsSource = ProductsDataSet.Products

End Sub

 C#
public MainWindow()

{

 InitializeComponent();

 this.c1DataGrid1.ItemsSource = ProductsDataSet.Products;

}

This code will bind the grid to the Products table in the C1NWind database.

Notice in the XAML view, the C1DataGrid tag now appears as the following:
<c1:C1DataGrid HorizontalAlignment="Left" Name="C1DataGrid1"

VerticalAlignment="Top" Height="215" Width="384"/>

Run the program and observe:

The grid is now populated with data from the Products table:

You've successfully bound DataGrid for WPF's C1DataGrid control to a data source. In the next step you'll
explore some of the run-time interactions that are possible in your grid application.

 21

Step 3 of 3: Running the Grid Application
Now that you've created a grid application and bound the grid to a database, the only thing left to do is run your

application. To run your grid application and observe Grid for WPF's run-time behavior, complete the following
steps:

1. From the Debug menu, select Start Debugging to view how your grid application will appear at run time.

2. Click the ProductName header to sort the grid by product name. Notice that a sort indicator glyph appears

to indicate the column being sorted and the direction of the sort.

Re-order the columns by clicking the ProductName column header and dragging it in front of the ProductID

column header. The ProductName column will now appear as the first column in the grid:

3. Resize a column, here the ProductID column, by clicking the right edge of the column and dragging the

edge to a new location.

22

4. Click once on a cell, edit the contents of that cell, and press the ENTER key.

Congratulations! You've completed the DataGrid for WPF quick start and created a DataGrid for WPF grid
application, bound the grid to a data source, and viewed some of the run-time capabilities of your grid application.

 23

Working with DataGrid for WPF
ComponentOne DataGrid for WPF allows you to select, edit, add, delete, filter, group, and sort the items

displayed in the table generated by the C1DataGrid component.

The columns of a table created using the C1DataGrid component correspond to the fields in a data source. You

can control which columns are displayed, the types of columns to display, and the appearance of the whole table.

Using the AutoGenerateColumns property, you can generate columns automatically, manually, or both. Setting

this property to True (default) creates columns automatically when the ItemsSource property is set. Setting this

property to False allows you to specify the columns to display, which are added to the Columns collection.

Note: By default explicitly declared columns are rendered first, followed by automatically generated columns. You
can change the order of rendered columns by setting the DisplayIndex property of the column. Automatically

generated columns are now added to the Columns collection.

Class Hierarchy
The following list summarizes the class relationships between the more important classes included in the DataGrid

for WPF:

 C1.WPF.DataGrid.C1DataGrid : System.Windows.Controls.Control
Encapsulates most of the grid functionality. This component is shown in Visual Studio's Toolbox.

 C1.WPF.DataGrid.DataGridColumn : System.Object

Represents a column in the grid.

 C1.WPF.DataGridColumnCollection : System.Object
Represents the collection of columns of the data grid.

 C1.WPF.DataGrid.DataGridColumnHeaderPresenter : System.Windows.Controls.Control

Content control that represent the header of a column; this control contains the sort, resize and filter
elements.

 C1.WPF.DataGrid.DataGridRow : System.Object
Represents a row in the grid.

 C1.WPF.DataGrid.DataGridRowCollection : System.Object
Collection of rows.

 C1.WPF.DataGrid.DataGridCell : System.Object
Represents an individual grid cell.

Data Binding
ComponentOne DataGrid for WPF's C1DataGrid control can be bound to any object that implements the

System.Collections.IEnumerable interface (such as XmlDataProvider, ObjectDataProvider, DataSet,

DataView, and so on). You can use the C1DataGrid.ItemsSource property to bind the C1DataGrid.

To bind the grid, simply set the ItemsSource property to an IEnumerable implementation. Each row in the data
grid will be bound to an object in the data source, and each column in the data grid will be bound to a property of
the data object.

Note that in order for the C1DataGrid user interface to update automatically when items are added to or removed

from the source data, the control must be bound to a collection that implements INotifyCollectionChanged, such

as an ObservableCollection<(Of <(T>)>).

24

For steps on binding a C1DataGrid control to an XML data source, see the DataGrid for WPF Quick Start (page
17).

Defining Columns
You can use ComponentOne DataGrid for WPF's Columns collection to programmatically add, insert, remove,

and change any columns in the control at run time. You can also specify columns in XAML with or without
automatically generating columns.

Creating your own columns enables you to use additional column types, such as the DataGridTemplateColumn

type or custom column types. The DataGridTemplateColumn type provides an easy way to create a simple

custom column. The CellTemplate and CellEditingTemplate properties enable you to specify content templates
for both display and editing modes.

Generating Columns

By default, the C1DataGrid control generates columns automatically, based on the type of data, when you set the

ItemsSource property. The generated columns are of type DataGridCheckBoxColumn for bound Boolean (and

nullable Boolean) properties, and of type DataGridTextColumn for bound string data,

DataGridComboBoxColumn for bound enum data, DataGridDateTimeColumn for bound date/time data, and

DataGridNumericColumn for bound numeric data. Bound undefined data is displayed in a

DataGridBoundColumn type column. If a property does not have a String or numeric value type, the generated

text box columns are read-only and display the data object's ToString value.

You can prevent automatic column generation by setting the AutoGenerateColumns property to False. This is

useful if you want to create and configure all columns explicitly. Alternatively, you can let the data grid generate

columns, but handle the AutoGeneratingColumn event to customize columns after creation. To rearrange the

display order of the columns, you can set the DisplayIndex property for individual columns.

Column Types

ComponentOne DataGrid for WPF's C1DataGrid control provides a flexible way to display a collection of data
in rows and columns by providing many built-in column editors that cover all of the common data types. Built-in
column types include:

Column Type Description

DataGridBoundColumn A column that can bind to a property in the grid's

data source. This is the default column type for
bound undefined data.

DataGridTextColumn A text column. This is the default column type for

bound string data.

DataGridCheckBoxColumn A check box column. This is the default column type
for bound Boolean data.

DataGridComboBoxColumn A combo box column. This is the default column type
for bound enumeration type data.

DataGridDateTimeColumn A date time column (see below for an image). This is
the default column type for bound date/time data.

DataGridImageColumn An image column.

DataGridNumericColumn A numeric column. This is the default column type

for bound numeric data (the format will be inferred
from the type. For example, if the type is int the

format will not contain decimal places).

DataGridTemplateColumn A template column for hosting custom content.

 25

CustomColumns A custom column. See the C1DataGrid_Demo sample

for examples ofcustom columns like a Composite
Column, Color Column, Gif Column, Hyperlink

Column, Masked Text Column, Multi line Text
Column, and so on.

These column types can provide built-in input validation; for example the DataGridDateTimeColumn column
includes a calendar for selecting a date:

Explicitly Defining Columns

If you choose, you can explicitly define columns. If the AutoGenerateColumns property is False only the columns

you have defined will appear in the grid.

In Microsoft Expression Blend, you can use the DataGridColumn Collection Editor to define columns in your

grid. Select the C1DataGrid control, and in the Properties window select the ellipsis button next to the

Columns(Collection) item in the Miscellaneous group. The DataGridColumn Collection Editor dialog box will

appear:

26

You can also define custom columns in the grid in XAML by using the Columns collection.

For example:

 XAML
<c1:C1DataGrid x:Name="grid" Grid.Row="1" Grid.ColumnSpan="2"

Margin="5" AutoGeneratingColumn="grid_AutoGeneratingColumn"

CanUserAddRows="False" ColumnHeaderHeight="30" >

 <c1:C1DataGrid.Columns>

 <!--

 Custom check box column.

 Adds a check box to the header and listens to its events.

 -->

 <c1:DataGridCheckBoxColumn Binding="{Binding Available,

Mode=TwoWay}" DisplayIndex="0" SortMemberPath="Available"

FilterMemberPath="Available" MinWidth="108" >

 <c1:DataGridColumn.Header>

 <StackPanel Orientation="Horizontal"

HorizontalAlignment="Left">

 <TextBlock Margin="6,0,6,0"

VerticalAlignment="Center" Text="Available"/>

 <CheckBox HorizontalAlignment="Left"

IsHitTestVisible="True" VerticalAlignment="Center" Grid.Column="1"

Checked="CheckBox_Checked" Unchecked="CheckBox_Checked"

Loaded="CheckBox_Loaded"/>

 </StackPanel>

 </c1:DataGridColumn.Header>

 </c1:DataGridCheckBoxColumn>

 <!--

 Custom "merged" column made with a DataGridTemplateColumn.

 You can also inherit from DataGridTemplateColumn and set

 this configuration in the constructor to make your XAML

 27

 cleaner.

 -->

 <c1:DataGridTemplateColumn>

 <c1:DataGridTemplateColumn.Header>

 <local:MergedColumnEditor ControlMode="Header" />

 </c1:DataGridTemplateColumn.Header>

 <c1:DataGridTemplateColumn.CellTemplate>

 <DataTemplate>

 <local:MergedColumnEditor ControlMode="Cell" />

 </DataTemplate>

 </c1:DataGridTemplateColumn.CellTemplate>

 <c1:DataGridTemplateColumn.CellEditingTemplate>

 <DataTemplate>

 <local:MergedColumnEditor ControlMode="EditingCell"

/>

 </DataTemplate>

 </c1:DataGridTemplateColumn.CellEditingTemplate>

 </c1:DataGridTemplateColumn>

 </c1:C1DataGrid.Columns>

</c1:C1DataGrid>

Customizing Automatically Generated Columns

You can customize columns even if columns are automatically generated. If the AutoGenerateColumns property

is set to True and columns are automatically generated, you can customize how generated columns are displayed

in code by handling the C1DataGrid.AutoGeneratingColumn event.

Adding the AutoGeneratingColumn Event Handler

Complete the following steps to add the AutoGeneratingColumn event handler:

1. Switch to Code view and add an event handler for the AutoGeneratingColumn event, for example:

 Visual Basic
Private Sub C1DataGrid1_AutoGeneratingColumn(ByVal sender As

System.Object, ByVal e As

C1.WPF.DataGrid.DataGridAutoGeneratingColumnEventArgs) Handles

C1DataGrid1.AutoGeneratingColumn

 ' Add code here.

End Sub

 C#
private void C1DataGrid1_AutoGeneratingColumn(object sender,

C1.WPF.DataGrid.DataGridAutoGeneratingColumnEventArgs e)

{

 // Add code here.

}

2. Switch to Source view and add the event handler to instances of the C1DataGrid control, for example:
<c1:C1DataGrid x:Name="c1DataGrid1" AutoGenerateColumns="True"

AutoGeneratingColumn=" c1DataGrid1_AutoGeneratingColumn"></c1:C1DataGrid>

You can now add code to the AutoGeneratingColumn event handler to customize the appearance and behavior of
automatically generated columns. Below are examples of customizing column formatting and behavior.

Canceling Column Generation

You can cancel the generation of specific columns in the AutoGeneratingColumn event. For example, you can

use the following code to cancel the generation of Boolean columns in the grid:

 Visual Basic

28

Private Sub C1DataGrid1_AutoGeneratingColumn(ByVal sender As

System.Object, ByVal e As

C1.WPF.DataGrid.DataGridAutoGeneratingColumnEventArgs) Handles

C1DataGrid1.AutoGeneratingColumn

 ' Cancel automatic generation of all Boolean columns.

 If e.Property.PropertyType Is GetType(Boolean) Then

 e.Cancel = True

 End If

End Sub

 C#
private void c1DataGrid1_AutoGeneratingColumn(object sender,

C1.WPF.DataGrid.DataGridAutoGeneratingColumnEventArgs e)

{

 // Cancel automatic generation of all Boolean columns.

 if (e.Property.PropertyType == typeof(bool))

 e.Cancel = true;

}

Changing a Column Header

In the AutoGeneratingColumn event you can change the text that appears in the header of automatically
generated columns. For example, you can change the "ProductName" column so that it appears with the "Name"
header using the following code:

 Visual Basic
Private Sub C1DataGrid1_AutoGeneratingColumn(ByVal sender As

System.Object, ByVal e As

C1.WPF.DataGrid.DataGridAutoGeneratingColumnEventArgs) Handles

C1DataGrid1.AutoGeneratingColumn

 ' Modify the header of the ProductName column.

 If e.Column.Header.ToString() = "ProductName" Then

 e.Header = "Name"

 End If

End Sub

 C#
private void c1DataGrid1_AutoGeneratingColumn(object sender,

C1.WPF.DataGrid.DataGridAutoGeneratingColumnEventArgs e)

{

 // Modify the header of the ProductName column.

 if (e.Column.Header.ToString() == "ProductName")

 e.Column.Header = "Name";

}

Preventing Column Interaction

Using the AutoGeneratingColumn event you can change how end users interact with specific generated columns.

For example, you can prevent users from moving read-only columns with the following code:

 Visual Basic
Private Sub C1DataGrid1_AutoGeneratingColumn(ByVal sender As

System.Object, ByVal e As

C1.WPF.DataGrid.DataGridAutoGeneratingColumnEventArgs) Handles

C1DataGrid1.AutoGeneratingColumn

 ' Modify the header of the ProductName column.

 If e.Column.IsReadOnly = True Then

 e.Column.CanUserMove = False

 End If

End Sub

 29

 C#
private void c1DataGrid1_AutoGeneratingColumn(object sender,

C1.WPF.DataGrid.DataGridAutoGeneratingColumnEventArgs e)

{

 // Modify the header of the ProductName column.

 if (e.Column.IsReadOnly == true)

 e.Column.CanUserMove = false;

}

Creating Custom Columns
ComponentOne DataGrid for WPF supports creating specific behavior columns. For example you can create a
Hyperlink column, a GIF column, a Rich Text column, and so on.

By creating a custom column you'll be able to customize the cell content and editing content of all the cells
belonging to a column, you can even customize the header presenter of the column.

First, you should add a new class file where the custom column will be written, for example complete the
following steps:

1. Navigate to the Solution Explorer, right-click the project name and select Add│New Item.

2. In the Add New Item dialog box choose Class in the list of templates.

3. Name the class, for example "DataGridHyperlinkColumn", and click the Add button to add the class to
the project.

Once the file is created it must inherit from DataGridBoundColumn. Update the class so it appears similar to the
following:

 Visual Basic
Imports C1.WPF.DataGrid

Public Class DataGridHyperlinkColumn

 Inherits DataGridBoundColumn

End Class

 C#
using C1.WPF.DataGrid;

public class DataGridHyperlinkColumn : DataGridBoundColumn

{

}

Customizing Column Cell Content

In this section you'll find information about changing the UI element shown as the content of cells belonging to a
column when the cell is not in editing mode.

It’s important to note that cell content UI elements are recycled by the data grid; that means that this column could
potentially use UI elements created by other columns.

To implement custom cell content you'll need to override the following methods:

 GetCellContentRecyclingKey: Key used to store the cell content for future reuse in a shared pool.

Columns returning the same RecyclingKey will be candidates to share the same cell content instances.

 CreateCellContent: Creates the visual element that will be used to display the information inside a cell.

 BindCellContent: Initializes the cell content presenter. This method must set cellContent properties, the

SetBinding of the corresponding dependency property being "row.DataItem", the source which can be set

directly in the binding or in the DataContext of the cellContent.

30

 UnbindCellContent: This method is called before the cell content is recycled.

In the implementation of a hyperlink column the methods might look similar to the example below. In the

following method a different key for this column is returned (the default key is typeof(TextBlock)), That means this
column will not share the cell content element with other columns (unless it would be another column which
returned the same key, but that's not likely to happen).

 Visual Basic
Public Overloads Overrides Function GetCellContentRecyclingKey(ByVal

row As DataGridRow) As Object

 Return (GetType(HyperlinkButton))

End Function

 C#
public override object GetCellContentRecyclingKey(DataGridRow row)

{

 return typeof(HyperlinkButton);

}

The CreateCellContent method will be called by the data grid if there is no recycled hyperlink. In this case a new

hyperlink will be created which will be used in the cell once the cell that contains the hyperlink is unloaded; the

hyperlink will be saved to be used in a future cell:

 Visual Basic
Public Overloads Overrides Function CreateCellContent(ByVal row As

DataGridRow) As FrameworkElement

 Return New HyperlinkButton()

End Function

 C#
public override FrameworkElement CreateCellContent(DataGridRow row)

{

 return new HyperlinkButton();

}

After the hyperlink is created or a recycled one is taken, the BindCellContent method will be called by the data grid

passing the hyperlink as a parameter. In this method you should set the properties of the hyperlink to bind it to the data

of the cell:

 Visual Basic
Public Overloads Overrides Sub BindCellContent(ByVal cellContent As

FrameworkElement, ByVal row As DataGridRow)

 Dim hyperlink = DirectCast(cellContent, HyperlinkButton)

 If Binding IsNot Nothing Then

 Dim newBinding As Binding = CopyBinding(Binding)

 newBinding.Source = row.DataItem

 hyperlink.SetBinding(HyperlinkButton.NavigateUriProperty,

newBinding)

 End If

 hyperlink.HorizontalAlignment = HorizontalAlignment

 hyperlink.VerticalAlignment = VerticalAlignment

End Sub

 C#
public override void BindCellContent(FrameworkElement cellContent,

DataGridRow row)

{

 var hyperlink = (HyperlinkButton)cellContent;

 if (Binding != null)

 {

 31

 Binding newBinding = CopyBinding(Binding);

 newBinding.Source = row.DataItem;

 hyperlink.SetBinding(HyperlinkButton.NavigateUriProperty,

newBinding);

 }

 hyperlink.HorizontalAlignment = HorizontalAlignment;

 hyperlink.VerticalAlignment = VerticalAlignment;

}

Note that you can also set the data item as the data context of the hyperlink instead of setting it in the Source
property of the binding. For example:

 Visual Basic
Hyperlink.DataContext = row.DataItem

 C#
Hyperlink.DataContext = row.DataItem;

Although you will end up with the same result, this technique is does not perform as well as setting the binding
source property directly.

Adding Properties to a Custom Column

You may want to add properties to a column in order to set a specific behavior. Continuing with the hyperlink

column created in the previous topics, in this topic you'll add a property called TargetName. This property allows
the user to specify the name of the target window or frame where the page will open.

Complete the following steps:

1. Add the following code to create the TargetName property:

 Visual Basic
Private _TargetName As String

Public Property TargetName() As String

 Get

 Return _TargetName

 End Get

 Set(ByVal value As String)

 _TargetName = value

 End Set

End Property

 C#
public string TargetName { get; set; }

2. Once the property is created you'll propagate this to the hyperlink in the BindCellContent method:

 Visual Basic
Public Overloads Overrides Sub BindCellContent(ByVal cellContent As

FrameworkElement, ByVal row As DataGridRow)

 Dim hyperlink = DirectCast(cellContent, HyperlinkButton)

 If Binding IsNot Nothing Then

 Dim newBinding As Binding = CopyBinding(Binding)

 newBinding.Source = row.DataItem

 hyperlink.SetBinding(HyperlinkButton.NavigateUriProperty,

newBinding)

 End If

 hyperlink.HorizontalAlignment = HorizontalAlignment

 hyperlink.VerticalAlignment = VerticalAlignment

 hyperlink.TargetName = TargetName

End Sub

32

 C#
public override void BindCellContent(FrameworkElement cellContent,

DataGridRow row)

{

 var hyperlink = (HyperlinkButton)cellContent;

 if (Binding != null)

 {

 Binding newBinding = CopyBinding(Binding);

 newBinding.Source = row.DataItem;

 hyperlink.SetBinding(HyperlinkButton.NavigateUriProperty,

newBinding);

 }

 hyperlink.HorizontalAlignment = HorizontalAlignment;

 hyperlink.VerticalAlignment = VerticalAlignment;

 hyperlink.TargetName = TargetName;

}

Tips

You may find the following tips helpful when adding properties to a custom column:

 Provide a constructor that takes PropertyInfo as parameter calling base(property) in order to

automatically set the Binding, SortMemberPath, FilterMemberPath and Header properties as well as

properties set using custom attributes. Currently supported attributes include: DisplayAttribute

(AutoGenerateFilter, Name, GroupName, Order), DisplayFormatAttribute, and EditableAttribute.

public DataGridHyperlinkColumn(PropertyInfo property) : base(property)

 You can set a converter in the binding to help you to manage scenarios where you need to use a column

bound to property source that is not the same type. Suppose you want to bind a numeric column against a
string property, this scenario will work correctly if you set a converter type which converts the string to a
double.

Creating Custom Rows
You may be able to solve several scenarios by creating custom rows like a new row, group row, filter row,
summary row, totals row, template row, and so on. Some of these rows are implemented internally and others are
provided as samples.

When creating a custom row you'll be able to change the following parts:

 Cells content

 Row presenter

 Row header presenter

See Customizing Row Cell Content (page 32) for more details.

Customizing Row Cell Content

This topic explains how to customize cell content. For example, suppose you wanted to build a filter row. You

could create a grid where the first row has a TextBox in each cell and when you type on it the grid is filtered by the
typed text as in the following image:

 33

Adding a Class File

You would need to add a new class file where the custom row will be written. For example, complete the following
steps to add a new class file:

1. Navigate to the Solution Explorer, right-click the project name and select Add│New Item.

2. In the Add New Item dialog box choose Class in the list of available templates.

3. Name the class, for example "DataGridFilterRow", and click the Add button to add the class to the
project.

4. Update the class so it appears similar to the following:

 Visual Basic
Imports C1.WPF.DataGrid

Public Class DataGridFilterRow

 Inherits DataGridRow

End Class

 C#
using C1.WPF.DataGrid;

public class DataGridFilterRow : DataGridRow

{

}

This will update the class to inherit from DataGridRow. Once the file is created it must inherit from

DataGridRow.

Once you've added the class, you can use it to implement filtering in the grid.

Overriding Methods

The methods you would need to override to specify the cell content of custom row are very similar to those
exposed in custom columns. To implement custom cell content you'd need to override the following methods:

 HasCellPresenter: Determines whether a cell should exist for this row and the specified column.

 GetCellContentRecyclingKey: Key used to store the cell content for future reuse in a shared pool. Rows

returning the same RecyclingKey can share the same cell content instances.

 CreateCellContent: Creates a visual element that will be used to display information inside a cell in this
column.

 BindCellContent: Initializes the cell content presenter.

 UnbindCellContent: This method is called before the cell content is recycled.

In the filter row the HasCellPresenter method will return always true, because all columns will have a
corresponding cell. In other scenarios like a summary row, only the columns where there is an aggregate function
will have a cell.

34

The GetCellContentRecyclingKey method will return typeof(TextBox), which allows recycling the text boxes,

and the CreateCellContent will create a new instance of it. Add the following code to

 Visual Basic
Protected Overrides Function GetCellContentRecyclingKey(column As

DataGridColumn) As Object

 Return GetType(TextBox)

End Function

Protected Overrides Function CreateCellContent(column As DataGridColumn)

As FrameworkElement

 Return New TextBox()

End Function

 C#
protected override object GetCellContentRecyclingKey(DataGridColumn

column)

{

 return typeof(TextBox);

}

protected override FrameworkElement CreateCellContent(DataGridColumn

column)

{

 return new TextBox();

}

Implementing Filtering

In the previous steps you added a TextBox in each cell, but these controls currently do not do anything; to
implement filtering complete the following steps:

1. Add the following code to the BindCellContent method:

 Visual Basic
Protected Overrides Sub BindCellContent(cellContent As

FrameworkElement, column As DataGridColumn)

 Dim filterTextBox = DirectCast(cellContent, TextBox)

 'If the column doesn't have a FilterMemberPath specified

 'it won't allow entering text in the TextBox;

 If String.IsNullOrEmpty(column.FilterMemberPath) Then

 filterTextBox.IsEnabled = False

 filterTextBox.Text = "Not available"

 Else

 filterTextBox.Text = ""

 filterTextBox.IsEnabled = True

 End If

 ' Handle TextChanged to apply the filter to the column.

 filterTextBox.TextChanged += New EventHandler(Of

TextChangedEventArgs)(filterTextBox_TextChanged)

End Sub

 C#
protected override void BindCellContent(FrameworkElement cellContent,

DataGridColumn column)

{

 var filterTextBox = (TextBox)cellContent;

 //If the column doesn't have a FilterMemberPath specified

 //it won't allow entering text in the TextBox;

 if (string.IsNullOrEmpty(column.FilterMemberPath))

 35

 {

 filterTextBox.IsEnabled = false;

 filterTextBox.Text = "Not available";

 }

 else

 {

 filterTextBox.Text = "";

 filterTextBox.IsEnabled = true;

 }

 // Handle TextChanged to apply the filter to the column.

 filterTextBox.TextChanged += new

EventHandler<TextChangedEventArgs>(filterTextBox_TextChanged);

}

2. In UnbindCellContent you must remove the text changed handler to avoid leaking memory:

 Visual Basic
Protected Overrides Sub UnbindCellContent(cellContent As

FrameworkElement, column As DataGridColumn)

 Dim filterTextBox = DirectCast(cellContent, C1SearchBox)

 filterTextBox.TextChanged -= New EventHandler(Of

TextChangedEventArgs)(filterTextBox_TextChanged)

End Sub

 C#
protected override void UnbindCellContent(FrameworkElement cellContent,

DataGridColumn column)

{

 var filterTextBox = (C1SearchBox)cellContent;

 filterTextBox.TextChanged -= new

EventHandler<TextChangedEventArgs>(filterTextBox_TextChanged);

}

Adding a Custom Row to the Data Grid

You can replace rows the data grid uses to show the data of each data item or group with custom rows, or you can
add custom rows on top or bottom of data item rows.

Replacing Data Item Row

In order to replace the rows generated by the data grid you must add a handler to the CreatingRow event. For
example, in the following image the rows were replaced with template rows:

36

The following code replaces the default row with a template row:

 Visual Basic
Private Sub C1DataGrid_CreatingRow(sender As Object, e As

DataGridCreatingRowEventArgs)

 'Check if it's an item row (it could be a group row too).

 If e.Type = DataGridRowType.Item Then

 e.Row = New DataGridTemplateRow() With { _

 .RowTemplate = DirectCast(Resources("TemplateRow"),

DataTemplate) _

 }

 End If

End Sub

 C#
private void C1DataGrid_CreatingRow(object sender,

DataGridCreatingRowEventArgs e)

{

 //Check if it's an item row (it could be a group row too).

 if (e.Type == DataGridRowType.Item)

 {

 e.Row = new DataGridTemplateRow()

 {

 RowTemplate = (DataTemplate)Resources["TemplateRow"]

 };

 }

}

Adding an Extra Row

ComponentOne DataGrid for WPF allows adding one or more rows on top or bottom of data. This functionality
is used in the new row, total row, summary row, and filter row scenarios.

For example, in XAML or code:

 XAML
<c1:C1DataGrid>

 <c1:C1DataGrid.TopRows>

 <local:DataGridFilterRow />

 </c1:C1DataGrid.TopRows>

 <c1:C1DataGrid.BottomRows>

 <local:DataGridFilterRow/>

 37

 </c1:C1DataGrid.BottomRows>

</c1:C1DataGrid>

 Visual Basic
grid.Rows.TopRows.Add(New DataGridFilterRow())

 C#
grid.Rows.TopRows.Add(new DataGridFilterRow());

Adding Row Details
Each grid row in ComponentOne DataGrid for WPF can be expanded to display a row details section. This row
details section can display more details information about a specific row's content. The row details section is

defined by a DataTemplate, RowDetailsTemplate, that specifies the appearance of the section and the data to be
displayed. For an example, see the RowDetailsTemplate (page 51) topic.

Using the RowDetailsVisibilityMode property the row details section can be displayed for selected rows,

displayed for all rows, or it can be collapsed. Setting Row Details Visibility (page 47) for more information.

Localizing the Application
You can localize (translate) end user visible strings in ComponentOne DataGrid for WPF. Localization in

DataGrid for WPF is based on the same approach as the standard localization of .NET Windows forms.

To localize your application, you will need to complete the following steps:

1. Add resource files for each culture that you wish to support.

2. Update your project file's supported cultures.

3. And, depending on your project, set the current culture.

Adding Resource Files

As with Windows Forms, you can create a set of resource files for the DataGrid for WPF assembly. You can
create separate resource files, with the extension .resx, for each required culture. When the application runs you
can switch between those resources and between languages. Note that all parts of your application using

components from a DataGrid for WPF DLL must use the same localization resource.

Localization Conventions

To localize the grid you would need to set up resource files for each localized culture. The following conventions
are recommended when creating .resx resource files:

 All .resx files should be placed in the Resources subfolder of your project.

 Files should be named as follows:

XXX.YYY.resx, where:

 XXX is the name of the ComponentOne assembly.

 YYY is the culture code of the resource. If your translation is only for the invariant culture, the .resx

file does not need to contain a culture suffix.

For example:

 C1.WPF.DataGrid.de.resx – German (de) resource for the C1.WPF.DataGrid assembly.

 C1.WPF.DataGrid.resx – Invariant culture resource for the C1.WPF.DataGrid assembly.

Localization Strings

The following table lists strings that can be added to an .resx file to localize your application:

38

String Default Value Description

AddNewRow Click here to add a new row Text that appears in the add new row.

CheckBoxFilter_Checked Checked : Text that appears in the filter for check box

columns to indicate if the column should be
filtered for checked or unchecked items.

ComboBoxFilter_SelectAll Select All Text that appears in the filter for check box
columns to select all items.

DateTimeFilter_End End Text that appears in the filter for date time
columns for the end of the date time range.

DateTimeFilter_Start Start Text that appears in the filter for date time
columns for the start of the date time range.

EmptyGroupPanel Drag a column here to group

by that column

Text that appears in the grouping area of the

grid when no columns are grouped.

Filter_Clear Clear Text that appears in the filter bar to clear the

filter condition.

Filter_Filter Filter Text that appears in the filter bar to add a filter

condition.

NumericFilter_And And Text that appears in the filter bar for numeric

columns to indicate multiple filter conditions.

NumericFilter_Equals Equals Text that appears in the filter bar for numeric

columns to indicate the filter condition should
apply to exact matches only.

NumericFilter_GraterOrEquals Greater/Equals Text that appears in the filter bar for numeric
columns to indicate the filter condition should

apply to items with higher values than the
condition value or exact matches only.

NumericFilter_Greater Greater Text that appears in the filter bar for numeric
columns to indicate the filter condition should

apply to items with higher values than the

condition value.

NumericFilter_Less Less Text that appears in the filter bar for numeric

columns to indicate the filter condition should
apply to items with lower values than the

condition value.

NumericFilter_LessOrEquals Less/Equals Text that appears in the filter bar for numeric

columns to indicate the filter condition should
apply to items with lower values than the

condition value or exact matches only.

NumericFilter_NotEquals Not Equals Text that appears in the filter bar for numeric

columns to indicate the filter condition should
apply to items that are not an exact match.

NumericFilter_Or Or Text that appears in the filter bar for numeric
columns to indicate multiple filter conditions.

TextFilter_Contains Contains Text that appears in the filter for text columns
to indicate if the filter condition should apply to

items that contain the value of the condition.

TextFilter_StartsWith Starts With Text that appears in the filter for text columns

to indicate if the filter condition should apply to
items that start with the value of the condition.

TextFilter_Equals Equals Text that appears in the filter bar for text

columns to indicate the filter condition should

apply to exact matches only.

 39

TextFilter_NotEquals Not Equals Text that appears in the filter bar for text

columns to indicate the filter condition should
apply to items that are not an exact match.

Adding Supported Cultures

Once you've created resource files for your application, you will need to set the supported cultures for your project.
To do so, complete the following steps:

1. In the Solution Explorer, right-click your project and select Unload Project.

The project will appear grayed out and unavailable.

2. Right click the project again, and select the Edit ProjectName.csproj option (or Edit

ProjectName.vbproj, where ProjectName is the name of your project).

3. In the .csproj file, locate the <SupportedCultures></SupportedCultures> tags. In between the

tags, list the cultures you want to be supported, separating each with a semicolon.

For example:
<SupportedCultures>fr;es;en;it;ru</SupportedCultures>

This will support French, Spanish, English, Italian, and Russian.

4. Save and close the .csproj or .vbproj file.

5. In the Solution Explorer, right-click your project and choose Reload Project from the content menu.

The project will be reloaded and will now support the specified cultures.

Setting the Current Culture

The C1DataGrid control will use localization files automatically according to the culture selected in the
application as long as you haven't moved files to another location or excluded files from the project. By default, the

current culture is designated as System.Threading.Thread.CurrentThread.CurrentUICulture. If you want to use

a culture other than the current culture, you can set the desired culture in your application using the following
code:

 Visual Basic
Public Sub New()

 ' Set desired culture, for example here the French (France) locale.

 System.Threading.Thread.CurrentThread.CurrentUICulture = New

System.Globalization.CultureInfo("fr-FR")

 ' InitializeComponent() call.

 ' Add any initialization after the InitializeComponent() call.

 InitializeComponent()

End Sub

 C#
public MainPage()

{

 // Set desired culture, for example here the French (France) locale.

 System.Threading.Thread.CurrentThread.CurrentUICulture = new

System.Globalization.CultureInfo("fr-FR");

 // InitializeComponent() call.

 InitializeComponent();

 // Add any initialization after the InitializeComponent() call.

}

40

Enabling or Disabling End User Interaction
You can customize how much control end users have over the grid at run time. For example you can enable
grouping, and prevent actions such as filtering columns and resizing rows. The following table lists properties that
you can use to customize how users interact with the grid:

Property Description

CanUserAddRows Determines if users can add rows at run time. True by default.

CanUserEditRows Determines if users can edit rows at run time. True by default.

CanUserFilter Determines if users can filter columns at run time. If True, the

filter bar will be visible on columns. True by default.

CanUserGroup Determines if users can group rows at run time. If True the

grouping area of the grid will be visible. False by default.

CanUserRemoveRows Determines if users can remove rows at run time by pressing

the DELETE key. True by default.

CanUserReorderColumns Determines if users can reorder columns at run time by using a

drag-and-drop operation. True by default.

CanUserResizeColumns Determines if users can resize columns at run time. True by

default.

CanUserResizeRows Determines if users can resize rows at run time. False by

default.

CanUserSort Determines if users can sort columns at run time by clicking on
a column's header. True by default.

CanUserToggleDetails Determines if users can toggle the row details section's
visibility. True by default.

CanUserFreezeColumns Determines if users can change the number of frozen columns
by dragging the freezing separator at run time. None by

default.

In each column you can customize the following properties:

Property Description

CanUserMove Determines if users can reorder this column at run time. True

by default.

CanUserResize Determines if users can resize this column at run time. True by

default.

CanUserFilter Determines if users can filter this column at run time. If True,

the filter bar will be visible on this column. True by default.

CanUserSort Determines if users can sort this column at run time. True by

default.

Note: The properties set in the grid take precedence over those set in columns.

Setting Selection Mode
You can set the grid's selection mode behavior by setting the SelectionMode property. You can change how users

interact with the grid, but setting the SelectionMode property to one of the following values:

 41

Option Description

None The user can not select any item.

SingleCell The user can select only one cell at a time.

SingleRow The user can select only one row at a time.

SingleColumn The user can select only one column at a time.

SingleRange The user can select only one cells range at a time. (A range is the rectangle delimited by
two cells)

MultiRow (Default) The user can select multiple rows while holding down the corresponding modifier key.

MultiColumn The user can select multiple columns while holding down the corresponding modifier key.

MultiRange The user can select multiple cells ranges while holding down the corresponding modifier

key.

For more information about modifier keys and the MultiRow option, see the Multiple Row Selection (page 54) topic.

Locking the Grid
By default users can interact and edit the grid and columns in the grid. If you choose, you can set the grid or

specific columns in the grid to not be editable with the IsReadOnly property.

In XAML

To lock the grid from being edited, add IsReadOnly="True" to the <c1:C1DataGrid> tag so that it appears

similar to the following:
<c1:C1DataGrid x:Name="c1DataGrid1" IsReadOnly="True">

In Code

To lock the grid from editing, set the IsReadOnly property to True. For example:

 Visual Basic
Me.C1DataGrid1.IsReadOnly = True

 C#
this.c1DataGrid1.IsReadOnly = true;

Deferred and Real Time Scrolling
ComponentOne DataGrid for WPF supports both real time and deferred scrolling. By default, real time scrolling
is used and as a user moves the thumb button or clicks the scroll button the grid scrolls. In deferred scrolling, the
grid is not scrolled until the user releases the scrollbar thumb; the grid does not move as the scrollbar thumb is
moved. You might want to implement deferred scrolling in your application if the grid contains a large amount of
data or to optimize scrolling.

You can determine how the grid is scrolled by setting the ScrollMode property. You can set the ScrollMode

property to a C1DataGridScrollMode enumeration option, either RealTime (default) or Deferred. The example

below set the grid to deferred scrolling mode.

In XAML

To set the grid to deferred scrolling mode, add ScrollMode="Deferred" to the <c1:C1DataGrid> tag so

that it appears similar to the following:
<c1:C1DataGrid x:Name="c1DataGrid1" ScrollMode="Deferred">

In Code

To set the grid to deferred scrolling mode, set the ScrollMode property to Deferred. For example:

42

 Visual Basic
Me.C1DataGrid1.ScrollMode = C1DataGridScrollMode.Deferred

 C#
this.c1DataGrid1.ScrollMode = C1DataGridScrollMode.Deferred;

DataGrid for WPF's Appearance
The C1DataGrid control supports common table formatting options, such as alternating row backgrounds and the
ability to show or hide headers, grid lines, and scroll bars. Additionally, the control provides several brush, style
and template properties that you can use to completely change the appearance of the control and its rows,

columns, headers, and cells.

Note that ComponentOne DataGrid for WPF uses ClearStyle technology for styling. For details, see C1DataGrid
ClearStyle (page 48).

C1DataGrid Themes
ComponentOne DataGrid for WPF incorporates several themes that allow you to customize the appearance of

your grid. When you first add a C1DataGrid control to the page, it appears similar to the following image:

This is the control's default appearance. You can change this appearance by using one of the built-in themes or by
creating your own custom theme. All of the built-in themes are based on WPF Toolkit themes. The built-in themes
are described and pictured below; note that in the images below, a cell has been selected and the mouse is hovering

over another cell to show both selected and hover styles:

Theme Name Theme Preview

 43

C1ThemeBureauBlack

C1ThemeExpressionDark

C1ThemeExpressionLight

44

C1ThemeRainierOrange

C1ThemeShinyBlue

C1ThemeWhistlerBlue

Editing Templates and Styles
One of the main advantages to using a WPF control is that controls are "lookless" with a fully customizable user
interface. Just as you design your own user interface (UI), or look and feel, for WPF applications, you can provide

your own UI for data managed by ComponentOne DataGrid for WPF. Extensible Application Markup Language

(XAML; pronounced "Zammel"), an XML-based declarative language, offers a simple approach to designing your

UI without having to write code. DataGrid for WPF includes several templates so that you don't have to begin
creating your own UI from scratch.

 45

Accessing Templates

You can access templates in Microsoft Expression Blend by selecting the C1DataGrid control and, in the

DataGrid's menu, selecting Edit Other Templates. To create a copy of a template that you can edit, open the

C1DataGrid menu, select Edit Other Templates, choose the template you wish to edit, and select either Edit a

Copy, to create an editable copy of the current template, or Create Empty, to create a new blank template.

Note: If you create a new template through the menu, the template will automatically be linked to that template's

property. If you manually create a template in XAML you will have to link the appropriate template property to the
template you've created.

ComponentOne DataGrid for WPF's C1DataGrid control provides several style properties that you can use to
completely change the appearance of the control and its rows, columns, headers, and cells. Some of the included

styles are described in the table below:

Style Description

CellStyle Gets or sets the style that is used when rendering the cells.

ColumnHeaderStyle Gets or sets the style that is used when rendering the column
headers.

DragOverColumnStyle Style applied to a ContentControl element used to show the
dragged column while it is moved.

DragSourceColumnStyle Style applied to a ContentControl that is placed over the
source column when it starts the drag-and-drop operation.

DropIndicatorStyle Style applied to a ContentControl element used to indicate the

position where the dragged column will be dropped.

FilterStyle Gets or sets the style used for the filter control container.

FocusStyle Sets the style of the internal Rectangle used to show the focus
on the C1DataGrid.

GroupColumnHeaderStyle Gets or sets the style that is used when rendering the column
headers in the group panel.

GroupRowHeaderStyle Gets of sets the style of the header of the group row.

GroupRowStyle Gets of sets the style of the group row.

NewRowHeaderStyle Gets or sets the style that is used when rendering the row
header for entering new items.

NewRowStyle Gets or sets the style that is used when rendering the row for
entering new items.

RowHeaderStyle Gets or sets the style that is used when rendering the row

46

headers.

RowStyle Gets or sets the style that is used when rendering the rows.

Table Formatting Options
The following topics detail table formatting options, including grid headers and placement of table objects.

Setting Row and Column Header Visibility

By default row and column headers are visible in the grid. However, if you choose, you can set one or both of the

headers to be hidden by setting the HeadersVisibility property. You can set the HeadersVisibility property to one
of the following options:

Option Description

None Neither row nor column headers are visible in the grid.

Column Only column headers are visible in the grid.

Row Only row headers are visible in the grid.

All (default) Both column and row headers are visible in the grid.

Setting Grid Line Visibility

By default vertical and horizontal grid lines are visible in the grid. However, if you choose, you can set one or both

sets of grid lines to be hidden by setting the GridLinesVisibility property. You can set the GridLinesVisibility
property to one of the following options:

Option Description

None Neither horizontal nor vertical grid lines are visible in the grid.

Horizontal Only horizontal grid lines are visible in the grid.

Vertical Only vertical grid lines are visible in the grid.

All (default) Both horizontal and vertical grid lines are visible in the grid.

Setting New Row Visibility

By default the Add New row is located at the bottom of the grid. However, if you choose, you can change its

location by setting the NewRowVisibility property. You can set the NewRowVisibility property to one of the

following options:

Option Description

Top The Add New row appears at the top of the grid.

Bottom (default) The Add New row appears at the bottom of the grid.

Setting Vertical and Horizontal Scrollbar Visibility

By default the grid's horizontal and vertical scrollbars are only visible when the height or width of grid content
exceeds the size of the grid. However, if you choose, you can set the scrollbars to be always or never visible, and

even disable them altogether, by setting the VerticalScrollbarVisibility and HorizontalScrollbarVisibility

properties. You can set the VerticalScrollbarVisibility and HorizontalScrollbarVisibility properties to one of the

following options:

 47

Option Description

Disabled The chosen scrollbar is disabled.

Auto (default) The chosen scrollbar appears only when the content of the grid

is exceeds the grid window.

Hidden The chosen scrollbar appears to be hidden.

Visible The chosen scrollbar is always visible.

Setting Row Details Visibility

By default row details are collapsed and not visible. You can use the RowDetailsVisibilityMode property to set if

and when row details are visible. You can set the RowDetailsVisibilityMode property to one of the following
options:

Option Description

VisibleWhenSelected Row details are only visible when selected.

Visible Row details are always visible.

Collapsed (default) Row details appear collapsed and are not visible.

C1DataGrid Brushes
ComponentOne DataGrid for WPF's C1DataGrid control provides several brush properties that you can use to
completely change the appearance of the control and its rows, columns, headers, and cells. Some of the included
brushes are described in the table below:

Brush Description

Background Gets or sets the background brush that is used when

rendering. (This brush will be applied to all the parts of
the data grid)

Foreground Gets or sets the foreground brush that is used when
rendering. (This brush will be applied to all the parts of

the data grid)

BorderBrush Gets or sets the border brush that is used when

rendering. (This brush will be applied to some of the
parts of the data grid depending on the theme)

SelectedBrush Gets or sets the selected brush that is used when

rendering selected rows and row and column headers,

etc.

MouseOverBrush Gets or sets the mouse over brush that is used when

mouse is over rows and row and column headers, etc.

RowBackground Gets or sets the background brush of a row.

RowForeground Gets or sets the foreground brush of a row.

AlternatingRowBackground Gets or sets the background brush of an alternating row.

AlternatingRowForeground Gets or sets the foreground brush of an alternating row.

HorizontalGridLinesBrush Gets of sets the brush applied to the horizontal lines.

VerticalGridLinesBrush Gets of sets the brush applied to the vertical lines.

48

ComponentOne DataGrid for WPF uses ClearStyle technology for styling. For details, see C1DataGrid
ClearStyle (page 48).

C1DataGrid ClearStyle
DataGrid for WPF supports ComponentOne's new ClearStyle technology that allows you to easily change control

colors without having to change control templates. By just setting a few color properties you can quickly style the
entire grid.

You can completely change the appearance of the C1DataGrid control by simply setting a few properties, such as

the C1DataGrid.Background property which sets the color scheme of the C1DataGrid control. For example, if

you set the Background property to "#FF663366" so the XAML markup appears similar to the following:

<c1:C1DataGrid HorizontalAlignment="Left" Margin="10,10,0,0"

Name="c1DataGrid1" VerticalAlignment="Top" CanUserFreezeColumns="Left"

CanUserGroup="True" Background="#FFFFFFCC"/>

The grid will appear similar to the following image:

If you set the Background property to "#FF663366" and the Foreground property to "White", so the XAML
markup appears similar to the following:

<c1:C1DataGrid HorizontalAlignment="Left" Margin="10,10,0,0"

Name="c1DataGrid1" VerticalAlignment="Top" CanUserFreezeColumns="Left"

CanUserGroup="True" Background="#FF663366" Foreground="White"/>

The grid will appear similar to the following image:

 49

You can even set the Background property to a gradient value, for example with the following XAML:

<c1:C1DataGrid x:Name="c1DataGrid1" HorizontalAlignment="Left"

Margin="10,10,0,0" VerticalAlignment="Top" CanUserFreezeColumns="Left"

CanUserGroup="True">

 <c1:C1DataGrid.Background>

 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">

 <GradientStop Color="GreenYellow" Offset="0.0" />

 <GradientStop Color="YellowGreen" Offset="0.85" />

 </LinearGradientBrush>

 </c1:C1DataGrid.Background>

</c1:C1DataGrid>

The grid will appear similar to the following image:

50

C1DataGrid Template Parts
In Microsoft Expression Blend, you can view and edit template parts by creating a new template (for example,

click the C1DataGrid control to select it and choose Object | Edit Template | Edit a Copy). Once you've created

a new template, the parts of the template will appear in the Parts window:

Note that you may have to select the ControlTemplate for its parts to be visible in the Parts window.

In the Parts window, you can double-click any element to create that part in the template. Once you have done so,

the part will appear in the template and the element's icon in the Parts pane will change to indicate selection:

Template parts available in the C1DataGrid control include:

Name Type Description

Body DataGridMainPanel Panel that contains the body of the grid.

ColumnsHeader DataGridColumnsHeaderPanel Panel that contains a collection of
DataGridColumnsHeaderPanel.

Grouping DataGridGroupingPresenter Presenter that displays the grouping panel or another
element if there is no columns in the grouping panel.

HorizontalScrollBar ScrollBar Represents a control that provides a scroll bar that
has a sliding Thumb whose position corresponds to a

value.

Root Grid Defines a flexible grid area that consists of columns

and rows.

RowsHeader DataGridRowsHeaderPanel Panel that contains DataGridRowsHeaderPanel.

VerticalScrollBar ScrollBar Represents a control that provides a scroll bar that
has a sliding Thumb whose position corresponds to a

value.

http://msdn2.microsoft.com/en-us/library/ms595205
http://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.thumb.aspx
http://msdn2.microsoft.com/en-us/library/ms610550
http://msdn2.microsoft.com/en-us/library/ms595205
http://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.thumb.aspx

 51

RowDetailsTemplate
The RowDetailsTemplate template controls the appearance of the row details area. The row details section
appears below a row and can display additional information.

In Expression Blend, you can create an empty template at design time by selecting the C1DataGrid control and

then clicking Object | Edit Other Templates | Edit RowDetailsTemplate | Create Empty.

You can include text, controls, and more in the RowDetailsTemplate, including controls bound to data. For
example, the following template includes bound and unbound text and check boxes:

<c1:C1DataGrid.RowDetailsTemplate>

 <!-- Begin row details section. -->

 <DataTemplate>

 <Border BorderBrush="DarkGray" BorderThickness="1"

Background="Azure">

 <StackPanel Orientation="Horizontal">

 <StackPanel>

 <StackPanel Orientation="Horizontal">

 <!-- Controls are bound to properties. -->

 <TextBlock FontSize="16" Foreground="MidnightBlue"

Text="{Binding Name}" Margin="0,0,10,0" VerticalAlignment="Bottom" />

 <TextBlock FontSize="12" Text="Order Date: "

VerticalAlignment="Bottom"/>

 <TextBlock FontSize="12" Text=" Complete:"

VerticalAlignment="Bottom" />

 <CheckBox IsChecked="{Binding Complete, Mode=TwoWay}"

VerticalAlignment="Center" />

 </StackPanel>

 <TextBlock FontSize="12" Text="Notes: " />

 <TextBox FontSize="12" Text="{Binding Notes,

Mode=TwoWay}" Width="420" TextWrapping="Wrap"/>

 </StackPanel>

 </StackPanel>

 </Border>

 </DataTemplate>

 <!-- End row details section. -->

</c1:C1DataGrid.RowDetailsTemplate>

Run-time Interaction
The image below highlights some of the run-time interactions possible in a ComponentOne DataGrid for WPF

C1DataGrid control:

52

The following topics detail these run-time features including filtering, sorting, and grouping data.

Keyboard and Mouse Navigation
ComponentOne DataGrid for WPF supports several run-time keyboard and mouse navigation options that
provide increased accessibility. The following topics detail some of these end-user interactions.

Keyboard Navigation

The following table lists several keyboard shortcuts that can be used to navigate and manipulate the grid at run
time. Note that on Apple computers, end users should use the Command (or Apple) key in place of the CTRL key:

Key Combination Description

DOWN Arrow Moves the focus to the cell directly below the current cell. If the

focus is in the last row, pressing the DOWN ARROW does nothing.

UP Arrow Moves the focus to the cell directly above the current cell. If the

focus is in the first row, pressing the UP ARROW does nothing.

LEFT ARROW

Moves the focus to the previous cell in the row. If the focus is in the

first cell in the row, pressing the LEFT ARROW does nothing.

RIGHT Arrow Moves the focus to the next cell in the row. If the focus is in the last

cell in the row, pressing the RIGHT ARROW does nothing.

HOME Moves the focus to the first cell in the current row.

END Moves the focus to the last cell in the current row.

PAGE DOWN Scrolls the control downward by the number of rows that are
displayed. Moves the focus to the last displayed row without

changing columns. If the last row is only partially displayed, scrolls
the grid to fully display the last row.

PAGE UP Scrolls the control upward by the number of rows that are displayed.

 53

Moves focus to the first displayed row without changing columns. If

the first row is only partially displayed, scrolls the grid to fully
display the first row.

TAB If the current cell is in edit mode, moves the focus to the next
editable cell in the current row. If the focus is already in the last cell

of the row, commits any changes that were made and moves the
focus to the first editable cell in the next row. If the focus is in the

last cell in the control, moves the focus to the next control in the tab
order of the parent container.

If the current cell is not in edit mode, moves the focus to the next
control in the tab order of the parent container.

SHIFT+TAB If the current cell is in edit mode, moves the focus to the previous
editable cell in the current row. If the focus is already in the first cell

of the row, commits any changes that were made and moves the
focus to the last cell in the previous row. If the focus is in the first

cell in the control, moves the focus to the previous control in the tab
order of the parent container.

If the current cell is not in edit mode, moves the focus to the
previous control in the tab order of the parent container.

CTRL+DOWN ARROW Moves the focus to the last cell in the current column.

CTRL+UP ARROW Moves the focus to the first cell in the current column.

CTRL+RIGHT ARROW Moves the focus to the last cell in the current row.

CTRL+LEFT ARROW Moves the focus to the first cell in the current row.

CTRL+HOME Moves the focus to the first cell in the control.

CTRL+PAGE DOWN Same as PAGE DOWN.

CTRL+PAGE UP Same as PAGE UP.

ENTER Enter/exit edit mode on a selected cell (if the grid and column's
IsReadOnly properties are False).

F2 Enter edit mode on a selected cell (if the grid and column's
IsReadOnly properties are False). If the focus is on the new row,

the grid begins editing the first editable cell of the new row.

ESC Cancel editing of a cell or new row.

DEL Delete selected row.

INSERT Scrolls to the new row and begins editing it.

Mouse Navigation

The following table lists several mouse and keyboard shortcuts that can be used to navigate and manipulate the
grid at run time. Note that on Apple computers, end users should use the Command (or Apple) key in place of the

CTRL key:

Mouse Action Description

Click an unselected row Makes the clicked row the current row.

Click a cell in the current
row

Puts the clicked cell into edit mode.

Drag a column header cell Moves the column so that it can be dropped into a new position (if
the CanUserReorderColumns property is True and the current

column's CanUserReorder property is True).

Drag a column header
separator

Resizes the column (if the CanUserResizeColumns property is
True and the CanUserResize property is True for the current

column).

54

Click a column header cell If the property ColumnHeaderClickAction is set to Sort, when the

user clicks the column header it sorts the column (if the
CanUserSortColumns property is True and the CanUserSort

property is True for the current column).

Clicking the header of a column that is already sorted will reverse

the sort direction of that column.

Pressing the CTRL key while clicking multiple column headers will

sort by multiple columns in the order clicked.

If the property ColumnHeaderClickAction is set to Select the

column will be selected if SelectionMode supports column
selection.

CTRL+click a row Modifies a non-contiguous multi-row selection (if SelectionMode
support multiple rows, cells, or columns).

SHIFT+click a row Modifies a contiguous multi-row selection (if SelectionMode
support multiple rows, cells, or columns).

Multiple Row Selection

If the SelectionMode property is set to MultiRow, the navigation behavior does not change, but navigating with
the keyboard and mouse while pressing SHIFT (including CTRL+SHIFT) will modify a multi-row selection.
Before navigation starts, the control marks the current row as an anchor row. When you navigate while pressing

SHIFT, the selection includes all rows between the anchor row and the current row.

Selection Keys

The following selection keys modify multi-row selection:

 SHIFT+DOWN ARROW

 SHIFT+UP ARROW

 SHIFT+PAGE DOWN

 SHIFT+PAGE UP

 CTRL+SHIFT+DOWN ARROW

 CTRL+SHIFT+UP ARROW

 CTRL+SHIFT+PAGE DOWN

 CTRL+SHIFT+PAGE UP

Mouse Selection

If the SelectionMode property is set to MultiRow, clicking a row while pressing CTRL or SHIFT will modify a

multi-row selection.

When you click a row while pressing SHIFT, the selection includes all rows between the current row and an
anchor row located at the position of the current row before the first click. Subsequent clicks while pressing SHIFT
changes the current row, but not the anchor row.

If the CTRL key is pressed when navigating, the arrow keys will navigate to the border cells; for example, if you
are in the first row and you press CTRL + DOWN you will navigate to the last row, if the SHIFT key is pressed,
all the rows will be selected though.

Custom Keyboard Navigation

You can add your own custom navigation to the C1DataGrid control. Custom keyboard navigation enables you
to control how users interact with the grid. For example, you can prevent users from navigating to read-only
columns or cells with null values. In a hierarchical grid, you could set up navigation between parent and child

 55

grids. To add custom keyboard navigation you would need to handle the KeyDown event and then add code to
override the default navigation with your customized navigation.

Adding the KeyDown Event Handler

Complete the following steps to add the KeyDown event handler:

1. Switch to Code view and add an event handler for the KeyDown event, for example:

 Visual Basic
Private Sub C1DataGrid1_KeyDown(ByVal sender As System.Object, ByVal e

As System.Windows.Input.KeyEventArgs) Handles C1DataGrid1.KeyDown

 ' Add code here.

End Sub

 C#
private void c1DataGrid1_KeyDown(object sender, KeyEventArgs e)

{

 // Add code here.

}

2. Switch to Source view and add the event handler to instances of the C1DataGrid control, for example:
<c1:C1DataGrid x:Name="c1DataGrid1" AutoGenerateColumns="True"

KeyDown="c1DataGrid1_KeyDown"></c1:C1DataGrid>

You can now add code to the KeyDown event handler to customize the default navigation. For an example, you

can take a look at the hierarchical grid example (C1_MDSL_RowDetail) in the ControlExplorer sample.

Resizing Columns and Rows
Users can easily resize columns and rows at run time through a drag-and-drop operation. To resize columns at run
time, complete the following steps:

1. Navigate the mouse to the right border of a column's header. The column resizing cursor appears:

2. Click the mouse and drag the cursor to the left or the right to resize the column:

3. Release the mouse to complete the column resize operation.

56

Resize rows in a similar way by dragging the row indicator column. Note that the CanUserResizeColumns and

CanUserResizeRows properties must be set to True (default) for column and row resizing to be possible. See the

Disabling Column and Row Resizing (page 69) topic for more details.

Reordering Columns
End users can easily reorder columns at run time. To reorder columns at run time, complete the following steps:

1. Click the column header for the column you wish to reorder.

2. Drag the column header to where you wish the column to be ordered. Notice that a line will appear if you
can place the column in that location:

3. Release the mouse to place the column in its new location and reorder the columns.

Note that the CanUserReorderColumns property must be set to True (default) for column reordering to be
possible. See the Disabling Column Reordering (page 68) topic for more details.

Filtering Columns
ComponentOne DataGrid for WPF incorporates a filter column element in the user interface, allowing users to
filter columns by specific criteria at run time.

To filter a column's text at run time, complete the following steps:

1. Click the drop-down arrow in a text column's header:

2. Enter the text in the filter text box that you want the column to be filtered by, and click the Filter button.

The column will be sorted.

Filter options vary depending on the column type. The following filter options may be included:

 Text Columns

In text columns, the filter bar appears similar to the following:

 57

You can filter the column by whether items in the column contain, start, are equivalent to, or are not
equivalent to the filter condition:

 Boolean Columns

Boolean check box columns can be filtered by whether items in the column are checked or not:

 Numeric Columns

Numeric columns offer several options for filtering:

58

You can filter the column by specific condition:

And you can use the And and Or radio buttons to filter by multiple conditions:

Note that the CanUserFilter property must be set to True (default) for filtering to be possible.

Sorting Columns
Sorting grid columns at run time is simple in ComponentOne DataGrid for WPF. To sort columns click once on
the header of the column that you wish to sort.

You will notice that the sort glyph, a sort direction indicator, appears when a column is sorted:

 59

You can click once again on the column header to reverse the sort; notice that the sort glyph changes direction.

Sort multiple columns by sorting one column and then holding the CTRL key while clicking on a second column
header to add that column to your sort condition. For example, in the following image the Category column was

first sorted, and then the Name column was reverse sorted:

Note that the CanUserSort property must be set to True (default) for sorting to be possible.

Grouping Columns
Users can group columns in your grid at run time to better organize information. The grouping area at the top of
the grid allows you to easily group columns through a simple drag-and-drop operation:

To group a column, drag a column header onto the grouping area:

60

You can sort the display of grouped items, by clicking the column header in the grouping area. In the following
image the grouped column has been reverse sorted:

You can group multiple columns by performing a drag-and-drop operation to drag additional columns to the
grouping area:

To remove the grouping, simply click the X button next to a grouped column in the grouping area of the grid:

 61

Note that the CanUserGroup property must be set to True for the grouping area to be visible and grouping to be

possible (by default it is set to False). For more information, see Enabling Grouping in the Grid (page 67). For

more information about showing the grouping area, see the Showing the Grouping Area (page 68) topic.

Freezing Columns
Users can freeze columns at run time to prevent them from being scrolled horizontally. This is useful as it keeps
specific columns visible when the grid is resized or scrolled. The freeze bar enables users to freeze columns. When
visible, the freeze bar appears to the left of the first columns by default:

To freeze specific columns, move the freeze bar to the right of the column(s) you want to freeze. For example, in
the following image the freeze bar was moved to the right of the second columns:

Once columns are frozen, they are not scrolled when the grid is scrolled horizontally. For example, in the
following image the first two columns are frozen:

62

Note that the ShowVerticalFreezingSeparator property must be set to Left (by default None) for the freeze bar to

be visible and the CanUserFreezeColumns property must be set to Left (by default None) to allow users to freeze
columns are run time. See Enabling Column Freezing (page 71) for an example.

Editing Cells
Users can easily edit cell content at run time. Editing content is as simple as selecting a cell and deleting or
changing the content in that cell. Complete the following steps to edit cell content:

1. Double-click the cell you would like to edit.

A cursor will appear in that cell indicating that it can be edited and a pencil icon will appear in the row
indicator column, indicating that a cell in that row is in edit mode.

2. Delete text or type in new or additional text to edit the content of the cell:

3. Press ENTER or click away from the cell you are editing for the changes you made to take effect:

 63

The pencil icon indicating editing will no longer be visible.

Note that the CanUserEditRows property must be set to True (default) for editing to be possible. See Disabling
Cell Editing (page 72) for an example.

Adding Rows to the Grid
You can add rows to the grid at run time using the new row bar. The new row bar, located at the bottom of the

grid by default and indicated by an asterisk symbol (*), allows you to type in new information to add to the grid at
run time:

To add a new row, simply type text into the new row bar:

Press ENTER for text to be added to the grid in a new row:

64

Note that the CanUserAddRows property must be set to True (default) for row adding to be possible. See
Disabling Adding Rows (page 72) for an example.

 65

DataGrid for WPF Task-Based Help
The following task-based help topics assume that you are familiar with Visual Studio and Expression Blend and

know how to use the C1DataGrid control in general. If you are unfamiliar with the ComponentOne DataGrid for

WPF product, please see the DataGrid for WPF Quick Start (page 17) first.

Each topic in this section provides a solution for specific tasks using the ComponentOne DataGrid for WPF

product. Most task-based help topics also assume that you have created a new WPF project and added a
C1DataGrid control to the project – for information about creating the control, see Creating a DataGrid (page 65).

Creating a DataGrid
You can easily create a C1DataGrid control at design time in Expression Blend, in XAML, and in code. Note that
if you create a C1DataGrid control as in the following steps, it will appear empty. You will need to bind the grid or
populate it with data.

At Design Time in Blend

To create a C1DataGrid control in Blend, complete the following steps:

1. Navigate to the Projects window and right-click the References folder in the project files list. In the

context menu choose Add Reference, locate and select the C1.WPF.DataGrid.dll assembly, and click

Open.

The dialog box will close and the references will be added to your project and the controls will be available
in the Asset Library.

2. In the Toolbox click on the Assets button (the double chevron icon) to open the Assets dialog box.

3. In the Asset Library dialog box, choose the Controls item in the left pane, and then click on the

C1DataGrid icon in the right pane:

The C1DataGrid icon will appear in the Toolbox under the Assets button.

4. Click once on the design area of the UserControl to select it. Unlike in Visual Studio, in Blend you can
add WPF controls directly to the design surface as in the next step.

5. Double-click the C1DataGrid icon in the Toolbox to add the control to the panel. The C1DataGrid
control will now exist in your application.

6. If you choose, can customize the control by selecting it and setting properties in the Properties window.

For example, set the C1DataGrid control's Name property to "c1datagrid1" the Height property to "180",

and the Width property to "250".

In XAML

To create a C1DataGrid control using XAML markup, complete the following steps:

1. In the Visual Studio Solution Explorer, right-click the References folder in the project files list. In the

context menu choose Add Reference, select the C1.WPF.DataGrid.dll assembly, and click OK.

2. Add a XAML namespace to your project by adding

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml" to the initial

<UserControl> tag. It will appear similar to the following:
<UserControl

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:c1="http://schemas.componentone.com/winfx/2006/xaml"

x:Class="C1DataGrid.MainPage" Width="640" Height="480">

66

3. Add a <c1:C1DataGrid> tag to your project within the <Grid> tag to create a C1DataGrid control.

The markup will appear similar to the following:
<Grid x:Name="LayoutRoot" Background="White">

 <c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250" />

</Grid>

This markup will create an empty C1DataGrid control named "c1datagrid1" and set the control's size.

In Code

To create a C1DataGrid control in code, complete the following steps:

1. In the Visual Studio Solution Explorer, right-click the References folder in the project files list. In the

context menu choose Add Reference, select the C1.WPF.dll and C1.WPF.DataGrid.dll assemblies, and

click OK.

2. Right-click within the MainPage.xaml window and select View Code to switch to Code view

3. Add the following import statements to the top of the page:

 Visual Basic
Imports C1.WPF.DataGrid

 C#
using C1.WPF.DataGrid;

4. Add code to the page's constructor to create the C1DataGrid control. It will look similar to the following:

 Visual Basic
Public Sub New()

 InitializeComponent()

 Dim c1datagrid1 As New C1DataGrid

 c1datagrid1.Height = 180

 c1datagrid1.Width = 250

 LayoutRoot.Children.Add(c1datagrid1)

End Sub

 C#
public MainPage()

{

 InitializeComponent();

 C1DataGrid c1datagrid1 = new C1DataGrid();

 c1datagrid1.Height = 180;

 c1datagrid1.Width = 250;

 LayoutRoot.Children.Add(c1datagrid1);

}

This code will create an empty C1DataGrid control named "c1datagrid1", set the control's size, and add
the control to the page.

What You've Accomplished

Run your application and observe that you've created a C1DataGrid control.

 67

Note that when you create a C1DataGrid control as in the above steps, it will appear empty. You can add items to
the control that can be interacted with at run time.

Controlling Grid Interaction
The following task-based help topics detail how you can enhance your users' interaction with DataGrid for WPF.
For example, you can allow users to filter, sort, reorder, delete, and edit the grid through code and XAML.

Enabling Grouping in the Grid

You can enable grouping and the grouping area of the grid so that users can group columns in your grid at run
time to better organize information. For more information, see Grouping Columns (page 59). By default, user

cannot group columns in the grid but you can enable this function by setting the CanUserGroup property to True.

At Design Time

To enable grouping, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserGroup property.

3. Check the check box next to the CanUserGroup property.

In XAML

For example to enable grouping, add CanUserGroup="True" to the < c1:C1DataGrid> tag so that it appears

similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserGroup=True" />

In Code

For example, to enable grouping, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserGroup = True

 C#
this.c1DataGrid1.CanUserGroup = true;

What You've Accomplished

Run the application and notice that the grouping area appears at the top of the grid. Note that you can also
customize the visibility of the grouping area. For more information about the grouping area, see the Showing the
Grouping Area (page 68) topic.

68

Showing the Grouping Area

By default grouping in the grid is disabled and the grouping area is not visible. For more information, see

Grouping Columns (page 59). When the CanUserGroup property is set to True and grouping is enabled the

grouping area is made visible. But if you choose you can show or hide the grouping area whether or not grouping
is enabled. By default, the grouping area is not visible when grouping is not enabled but you can make the area

visible by setting the ShowGroupingPanel property to True.

At Design Time

To show the grouping area, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the ShowGroupingPanel property.

3. Check the check box next to the ShowGroupingPanel property.

In XAML

For example to show the grouping area, add ShowGroupingPanel="True" to the < c1:C1DataGrid> tag so

that it appears similar to the following:
<c1:C1DataGrid Name="c1DataGrid1" Height="180" Width="250"

ShowGroupingPanel="True" />

In Code

For example, to show the grouping area, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.ShowGroupingPanel = True

 C#
this.c1DataGrid1.ShowGroupingPanel = true;

What You've Accomplished

Run the application and notice that the grouping area appears at the top of the grid. Note that even if the grouping

area is visible, grouping will not be enabled if the CanUserGroup property is False. For more information, see the
Enabling Grouping in the Grid (page 67) topic.

Disabling Column Reordering

By default end users can easily reorder columns in the grid at run time. For more information, see Reordering
Columns (page 56). If you choose, however, you can disable the column reordering feature by setting the

CanUserReorderColumns property to False.

At Design Time

To disable column reordering, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserReorderColumns property.

3. Clear the check box next to the CanUserReorderColumns property.

In XAML

For example to disable column reordering, add CanUserReorderColumns="False" to the <

c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserReorderColumns="False" />

In Code

For example, to disable column reordering, add the following code to your project:

 69

 Visual Basic
Me.C1DataGrid1.CanUserReorderColumns = False

 C#
this.c1DataGrid1.CanUserReorderColumns = false;

What You've Accomplished

Run the application and observe that you can no longer reorder columns at run time by preforming a drag-and-
drop operation. For more information about column reordering, see the Reordering Columns (page 56) topic.

Disabling Column and Row Resizing

By default end users can resize columns and rows in the grid at run time. For more information, see Resizing
Columns and Rows (page 55). If you choose, however, you can disable the column and row resizing feature by

setting the CanUserResizeColumns and CanUserResizeRows properties to False.

At Design Time

To disable column and row resizing, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserResizeColumns property.

3. Clear the check box next to the CanUserResizeColumns property.

4. In the Properties window, locate the CanUserResizeRows property.

5. Clear the check box next to the CanUserResizeRows property.

In XAML

For example to disable column and row resizing, add CanUserResizeColumns="False"

CanUserResizeRows="False" to the < c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserResizeColumns="False" CanUserResizeRows="False"/>

In Code

For example, to disable column and row resizing, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserResizeColumns = False

Me.C1DataGrid1.CanUserResizeRows = False

 C#
this.c1DataGrid1.CanUserResizeColumns = false;

this.c1DataGrid1.CanUserResizeRows = false;

What You've Accomplished

Run the application and observe that you can no longer resize columns or rows at run time by preforming a drag-
and-drop operation. For more information about column reordering, see the Resizing Columns and Rows (page
55) topic.

Disabling Column Filtering

By default end users can filter columns in the grid at run time. For more information, see Filtering Columns (page
56). If you choose, however, you can disable the column filtering feature by setting the CanUserFilter property to

False.

At Design Time

To disable column filtering, complete the following steps:

70

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserFilter property.

3. Clear the check box next to the CanUserFilter property.

In XAML

For example to disable column filtering, add CanUserFilter="False" to the < c1:C1DataGrid> tag so that

it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserFilter="False" />

In Code

For example, to disable column filtering, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserFilter = False

 C#
this.c1DataGrid1.CanUserFilter = false;

What You've Accomplished

Run the application and observe that you can no longer filter columns at run time; the drop-down arrow to display
the filter box is no longer visible at run time. For more information about column filtering, see the Filtering
Columns (page 56) topic.

Disabling Column Sorting

By default end users can sort columns in the grid at run time. For more information, see Sorting Columns (page
58). If you choose, however, you can disable the column sorting feature by setting the CanUserSort property to

False.

At Design Time

To disable column sorting, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserSort property.

3. Clear the check box next to the CanUserSort property.

In XAML

For example to disable column sorting, add CanUserSort="False" to the < c1:C1DataGrid> tag so that it

appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserSort="False" />

In Code

For example, to disable column sorting, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserSort = False

 C#
this.c1DataGrid1.CanUserSort = false;

What You've Accomplished

Run the application and observe that you can no longer sort columns at run time. Clicking on a column's header at
run time will not sort the grid and the sort indicator is not visible in the column header. For more information
about column sorting, see the Sorting Columns (page 58) topic.

 71

Enabling Column Freezing

You may want to freeze columns in the grid at run time so that they are always visible even when the grid is
scrolled horizontally. For more information, see Freezing Columns (page 61). This feature is not enabled by

default, but if you choose you can enable the column freezing feature by setting the CanUserFreezeColumns

property to Left.

At Design Time

To enable column freezing, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserFreezeColumns property.

3. Click the drop-down arrow next to the CanUserFreezeColumns property and select Left.

In XAML

For example to enable column freezing, add CanUserFreezeColumns="Left" to the <c1:C1DataGrid> tag

so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserFreezeColumns="Left" />

In Code

For example, to enable column freezing, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserFreezeColumns = DataGridColumnFreezing.Left

 C#
this.c1DataGrid1.CanUserFreezeColumns = DataGridColumnFreezing.Left;

What You've Accomplished

Run the application and observe that the freeze bar is visible at run time. The freeze bar can be moved to select
which columns to freeze; columns to the left of the bar will be frozen so that they are always visible even when the
grid is scrolled horizontally. For more information about column freezing, see the Freezing Columns (page 61)
topic.

Freezing Grid Rows

You may want to freeze the top or bottom rows in the grid at so that they are always visible even when the grid is
scrolled vertically at run time. This feature is not enabled by default, but if you choose you can enable the row
freezing feature by setting the FrozenTopRowsCount and FrozenBottomRowsCount properties.

At Design Time

To freeze the top and bottom two rows, complete the following steps:

1. Click the C1DataGrid control once to select it and navigate to the Properties window.

2. In the Properties window, locate the FrozenTopRowsCount property, click in the text box next to the
property, and enter "2" to set the number of top tows that will be frozen.

3. Locate the FrozenBottomRowsCount property, click in the text box next to the property, and enter "2" to
set the number of bottom rows that will be frozen.

In XAML

For example to freeze the top and bottom two rows, add FrozenTopRowsCount="2"

FrozenBottomRowsCount="2" to the <c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

FrozenTopRowsCount="2" FrozenBottomRowsCount="2" />

72

In Code

For example, to freeze the top and bottom two rows, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.FrozenTopRowsCount = True

Me.C1DataGrid1.FrozenBottomRowsCount = True

 C#
this.c1DataGrid1.FrozenTopRowsCount = true;

this.c1DataGrid1.FrozenBottomRowsCount = true;

What You've Accomplished

Run the application and observe that the two top and bottom rows are frozen. Scroll the grid vertically and notice
that the top two an bottom two rows do not scroll and are locked in place. By default the Add New row appears as
the last row in the grid and so will be one of the frozen rows.

Disabling Cell Editing

By default end users edit content in the grid at run time. For more information, see Editing Cells (page 62). If you

choose, however, you can disable the cell editing feature by setting the CanUserEditRows property to False.

At Design Time

To disable cell editing, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserEditRows property.

3. Clear the check box next to the CanUserEditRows property.

In XAML

For example to disable cell editing, add CanUserEditRows="False" to the < c1:C1DataGrid> tag so that it

appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserEditRows="False" />

In Code

For example, to disable cell editing, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserEditRows = False

 C#
this.c1DataGrid1.CanUserEditRows = false;

What You've Accomplished

Run the application and double-click a cell; observe that the cell does not move into edit mode and you can no
longer edit grid content at run time. For more information about cell editing, see the Editing Cells (page 62) topic.

Disabling Adding Rows

By default end users add new rows and content to the grid at run time. A new row bar appears at the bottom of the
grid, users can enter text in the bar to add new content to the grid. For more information, see Adding Rows to the
Grid (page 63). If you choose, however, you can disable the new row bar feature by setting the CanUserAddRows

property to False.

At Design Time

To disable adding rows, complete the following steps:

 73

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserAddRows property.

3. Clear the check box next to the CanUserAddRows property.

In XAML

For example to disable adding rows, add CanUserEditRows="False" to the < c1:C1DataGrid> tag so that

it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserAddRows="False" />

In Code

For example, to disable adding rows, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserAddRows = False

 C#
this.c1DataGrid1.CanUserAddRows = false;

What You've Accomplished

Run the application and scroll to the end of the grid, if needed. Observe that the new row bar no longer appears in
the grid and that users can no longer add new rows and content to the grid. For more information about cell
editing, see the Adding Rows to the Grid (page 63) topic.

Disabling Row Details Toggling

When the grid includes a child grid or you've created a master-detail grid, by default the row details can be toggled
so that they are visible or collapsed. If you choose, however, you can disable the toggling the details row feature by

setting the CanUserToggleDetails property to False. Note that you will need to have a grid with row details to

view the change in this example.

At Design Time

To disable toggling row details, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and locate the CanUserToggleDetails property.

3. Clear the check box next to the CanUserToggleDetails property.

In XAML

For example to disable toggling row details, add CanUserToggleDetails="False" to the <

c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

CanUserToggleDetails="False" />

In Code

For example, to disable toggling row details, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.CanUserToggleDetails = False

 C#
this.c1DataGrid1.CanUserToggleDetails = false;

What You've Accomplished

74

Run the application and observe that you can no longer toggle the row details in the grid at run time. The arrow
icon in the row header that indicates that row details can be toggled is no longer visible so toggling rows is not an
option.

Customizing Grid Appearance
The following task-based help topics detail how you can customize DataGrid for WPF by changing the grid's

appearance. DataGrid for WPF includes several appearance options that incorporate ComponentOne's unique
ClearStyle technology. For example, you can change the background color of the grid or the alternating row
background. Note for more information about ClearStyle technology, see the C1DataGrid ClearStyle (page 48)
topic. The follow topics also detail changing the layout of the grid, including how to set the location of the header
and add new row bar.

Changing the Grid's Background and Foreground Color

ComponentOne DataGrid for WPF includes ComponentOne's unique ClearStyle technology that enables you to
change the entire appearance of the grid simply and flawlessly. The following steps will detail how to set the

C1DataGrid.Background property to completely change the appearance of the grid. For more details about
ComponentOne's ClearStyle technology, see the C1DataGrid ClearStyle (page 48) topic.

At Design Time

To change the grid's foreground and background color so that it appears green, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and click the drop-down arrow next to the Background property.

3. Click the drop-down arrow in the box the hex code appears in, and choose Green.

4. Navigate to the Properties window and click the drop-down arrow next to the Foreground property.

5. Click the drop-down arrow in the box the hex code appears in, and choose White.

In XAML

For example to change the grid's foreground and background color so that it appears green, add

Background="Green" Foreground="White" to the <c1:C1DataGrid> tag so that it appears similar to

the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

Background="Green" Foreground="White" />

In Code

For example, to change the grid's foreground and background color so that it appears green, add the following
code to your project:

 Visual Basic
Me.C1DataGrid1.Background = New

System.Windows.Media.SolidColorBrush(Colors.Green)

Me.C1DataGrid1.ForeGround = New

System.Windows.Media.SolidColorBrush(Colors.White)

 C#
this.c1DataGrid1.Background = new System.Windows.Media.

SolidColorBrush(Colors.Green);

this.c1DataGrid1.Foreground = new System.Windows.Media.

SolidColorBrush(Colors.White);

What You've Accomplished

Run the application and observe that the grid now appears green with white text in the grid header.

 75

Note that with the C1DataGrid control's ClearStyle technology, the color of the grid, the grid's scrollbars, and the
alternating row background of the grid all changed to reflect the green background. Highlight an item in the grid
and notice the mouse hover style did not change; you can customize these styles as well if you choose. See
Changing the Grid's Mouse Hover Style (page 76) for more details.

Removing the Grid's Alternating Row Colors

ComponentOne DataGrid for Silverlight appears with alternating row colors by default. Alternating row colors
are when alternate lines appear in a different color than the base color of the grid. This is helpful so that rows are
easier to follow across the grid, but if you choose you can make the appearance of the grid uniform by removing
the alternating row colors.

At Design Time

To remove alternating row colors and set it so all rows appear white, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and click the drop-down arrow next to the RowBackground property.

3. Click the drop-down arrow in the box the hex code appears in, and choose White.

4. Navigate to the Properties window and click the drop-down arrow next to the

AlternatingRowBackground property.

5. Click the drop-down arrow in the box the hex code appears in, and choose White.

In XAML

To remove alternating row colors and set it so all rows appear white, add RowBackground="White"

AlternatingRowBackground="White" to the <c1:C1DataGrid> tag so that it appears similar to the

following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

RowBackground="White" AlternatingRowBackground="White" />

In Code

To remove alternating row colors and set it so all rows appear white, add the following code to your project:

 Visual Basic
Me.C1DataGrid1.RowBackground = New

System.Windows.Media.SolidColorBrush(Colors.White)

76

Me.C1DataGrid1.AlternatingRowBackground = New

System.Windows.Media.SolidColorBrush(Colors.White)

 C#
this.c1DataGrid1.RowBackground = new System.Windows.Media.

SolidColorBrush(Colors.White);

this.c1DataGrid1.AlternatingRowBackground = new System.Windows.Media.

SolidColorBrush(Colors.White);

What You've Accomplished

Run the application and observe that all rows in the grid now appear white.

Changing the Grid's Mouse Hover Style

By default, columns and rows that are moused over appear in a different color to indicate to users what area of the
grid they are interacting with. If you choose you can customize the appearance of cells that are moused over. For
example, you may want to highlight these cells even more or remove this effect.

At Design Time

To set the mouse over effect to yellow, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and click the drop-down arrow next to the MouseOverBrush property.

3. Click the drop-down arrow in the box the hex code appears in, and choose Yellow.

In XAML

To set the mouse over effect to yellow, add MouseOverBrush="Yellow" to the <c1:C1DataGrid> tag so

that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

MouseOverBrush="Yellow" />

In Code

To set the mouse over effect to yellow, add the following code to your project:

 Visual Basic
Me.c1datagrid1.MouseOverBrush = New

System.Windows.Media.SolidColorBrush(Colors.Yellow)

 C#

 77

this.c1datagrid1.MouseOverBrush = new

System.Windows.Media.SolidColorBrush(Colors.Yellow);

What You've Accomplished

Run the application and observe that all highlighted rows and columns in the grid now appear yellow.

Changing the Grid's Font Style

You may want to update the font style that appears in DataGrid for Silverlight when the control is run. For
example, you may want to change the style of the grid, an element of which is the font style, to match your
application's appearance.

At Design Time

To change the font style, complete the following steps:

1. Click the C1DataGrid control once to select it.

2. Navigate to the Properties window and click the drop-down arrow next to the FontFamily property and

choose Times New Roman.

3. Navigate to the Properties window and click the drop-down arrow next to the FontSize property and

choose 10.

In XAML

To change the font style, add FontFamily="Times New Roman" FontSize="10" to the

<c1:C1DataGrid> tag so that it appears similar to the following:
<c1:C1DataGrid Name="c1datagrid1" Height="180" Width="250"

FontFamily="Times New Roman" FontSize="10" />

In Code

To remove alternating row colors and set it so all rows appear white, add the following code to your project:

 Visual Basic
Me.c1datagrid1.FontFamily = New FontFamily("Times New Roman")

Me.c1datagrid1.FontSize = 10

 C#
this.c1datagrid1.FontFamily = new FontFamily("Times New Roman");

this.c1datagrid1.FontSize = 10;

What You've Accomplished

78

Run the application and observe that all rows in the grid appear in the Times New Roman font.

	ComponentOne DataGrid for WPF Overview
	What's New in DataGrid for WPF
	Installing DataGrid for WPF
	Grid for WPF Setup Files
	System Requirements
	Installing Demonstration Versions
	Uninstalling DataGrid for WPF

	End-User License Agreement
	Licensing FAQs
	What is Licensing?
	How does Licensing Work?
	Common Scenarios
	Creating components at design time
	Creating components at run time
	Inheriting from licensed components
	Using licensed components in console applications
	Using licensed components in Visual C++ applications
	Using licensed components with automated testing products

	Troubleshooting
	I have a licensed version of a ComponentOne product but I still get the splash screen when I run my project.
	I have a licensed version of a ComponentOne product on my Web server but the components still behave as unlicensed.
	I downloaded a new build of a component that I have purchased, and now I'm getting the splash screen when I build my projects.

	Technical Support
	Redistributable Files
	About this Documentation
	XAML and XAML Namespaces
	Creating a Microsoft Blend Project
	Creating a .NET Project in Visual Studio
	Creating an XAML Browser Application (XBAP) in Visual Studio
	Adding the DataGrid for WPF Components to a Blend Project
	Adding the DataGrid for WPF Components to a Visual Studio Project

	Key Features
	DataGrid for WPF Quick Start
	Step 1 of 3: Adding Grid for WPF to your Project
	Step 2 of 3: Binding the Grid to a Data Source
	Step 3 of 3: Running the Grid Application

	Working with DataGrid for WPF
	Class Hierarchy
	Data Binding
	Defining Columns
	Generating Columns
	Column Types
	Explicitly Defining Columns
	Customizing Automatically Generated Columns

	Creating Custom Columns
	Customizing Column Cell Content
	Adding Properties to a Custom Column

	Creating Custom Rows
	Customizing Row Cell Content
	Adding a Custom Row to the Data Grid

	Adding Row Details
	Localizing the Application
	Adding Resource Files
	Adding Supported Cultures
	Setting the Current Culture

	Enabling or Disabling End User Interaction
	Setting Selection Mode
	Locking the Grid
	Deferred and Real Time Scrolling

	DataGrid for WPF's Appearance
	C1DataGrid Themes
	Editing Templates and Styles
	Table Formatting Options
	Setting Row and Column Header Visibility
	Setting Grid Line Visibility
	Setting New Row Visibility
	Setting Vertical and Horizontal Scrollbar Visibility
	Setting Row Details Visibility

	C1DataGrid Brushes
	C1DataGrid ClearStyle
	C1DataGrid Template Parts
	RowDetailsTemplate

	Run-time Interaction
	Keyboard and Mouse Navigation
	Keyboard Navigation
	Mouse Navigation
	Multiple Row Selection
	Custom Keyboard Navigation

	Resizing Columns and Rows
	Reordering Columns
	Filtering Columns
	Sorting Columns
	Grouping Columns
	Freezing Columns
	Editing Cells
	Adding Rows to the Grid

	DataGrid for WPF Task-Based Help
	Creating a DataGrid
	Controlling Grid Interaction
	Enabling Grouping in the Grid
	Showing the Grouping Area
	Disabling Column Reordering
	Disabling Column and Row Resizing
	Disabling Column Filtering
	Disabling Column Sorting
	Enabling Column Freezing
	Freezing Grid Rows
	Disabling Cell Editing
	Disabling Adding Rows
	Disabling Row Details Toggling

	Customizing Grid Appearance
	Changing the Grid's Background and Foreground Color
	Removing the Grid's Alternating Row Colors
	Changing the Grid's Mouse Hover Style
	Changing the Grid's Font Style

